Part I Structures.- 1 Sets and Numbers: An Intuitive Introduction.- 2 Cartesian Structure and R^n.- 3 Linear Structure.- 4 Euclidean Structure.- 5 Topological Structure.- 6 Functions.- 7 Cardinality.
- Part II Discrete Analysis.- 8 Sequences.- 9 Series.- 10 Discrete Calculus.- Part III Continuity.- 11 Limits of Functions.- 12 Continuous Functions.- Part IV Linear and Nonlinear Analysis.
- 13 Linear Functions and Operators.- 14 Concave Functions.- 15 Homogeneous Functions.- 16 Lipschitz Functions.- 17 Supermodular Functions.- Part V Optima.- 18 Optimization Problems.- 19 Semicontinuous optimization.
- 20 Projections and Approximations.- 21 Forms and spectra.- Part VI Differential Calculus.- 22 Derivatives.- 23 Differential Calculus in Several Variables.- 24 Differential Methods.- 25 Approximation.- 26 Concavity and Differentiability.
- 27 Nonlinear Riesz's Theorems.- 28 Implicit Functions.- 29 Inverse Functions.- 30 Study of Functions.- Part VII Differential Optimization.- 31 Unconstrained Optimization.- 32 Equality Constraints.- 33 Inequality Constraints.
- 34 General Constraints.- 35 Intermezzo: Correspondences.- 36 Parametric Optimization Problems.- 37 Interdependent Optimization.- Part VIII Integration.- 38 The Riemann Integral.- 39 Improper Riemann integrals.- 40 Parametric Riemann integrals.
- 41 Stieltjes' Integral.- 42 Moments.- Part IX Appendices.- A Binary Relations.- B Permutations.- C Notions of Trigonometry.- D Elements of Intuitive Logic.- E Mathematical Induction.
- F Cast of Characters.