Contents Preface xiii Acknowledgments xvii Acronyms xix 1 Cybersecurity in the Era of Artificial Intelligence 1 1.1 Artificial Intelligence for Cybersecurity . 2 1.1.1 Artificial Intelligence 2 1.1.2 Machine Learning 4 1.1.
3 Data-Driven Workflow for Cybersecurity . 6 1.2 Key Areas and Challenges 7 1.2.1 Anomaly Detection . 8 1.2.2 Trustworthy Artificial Intelligence .
10 1.2.3 Privacy Preservation . 10 1.3 Toolbox to Build Secure and Intelligent Systems . 11 1.3.1 Machine Learning and Deep Learning .
12 1.3.2 Privacy-Preserving Machine Learning . 14 1.3.3 Adversarial Machine Learning . 15 1.4 Data Repositories for Cybersecurity Research .
16 1.4.1 NSL-KDD . 17 1.4.2 UNSW-NB15 . 17 v 1.4.
3 EMBER 18 1.5 Summary 18 2 Cyber Threats and Gateway Defense 19 2.1 Cyber Threats . 19 2.1.1 Cyber Intrusions . 20 2.1.
2 Distributed Denial of Services Attack . 22 2.1.3 Malware and Shellcode . 23 2.2 Gateway Defense Approaches 23 2.2.1 Network Access Control 24 2.
2.2 Anomaly Isolation 24 2.2.3 Collaborative Learning . 24 2.2.4 Secure Local Data Learning 25 2.3 Emerging Data-Driven Methods for Gateway Defense 26 2.
3.1 Semi-Supervised Learning for Intrusion Detection 26 2.3.2 Transfer Learning for Intrusion Detection 27 2.3.3 Federated Learning for Privacy Preservation . 28 2.3.
4 Reinforcement Learning for Penetration Test 29 2.4 Case Study: Reinforcement Learning for Automated Post-Breach Penetration Test . 30 2.4.1 Literature Review 30 2.4.2 Research Idea 31 2.4.
3 Training Agent using Deep Q-Learning 32 2.5 Summary 34 vi 3 Edge Computing and Secure Edge Intelligence 35 3.1 Edge Computing . 35 3.2 Key Advances in Edge Computing . 38 3.2.1 Security 38 3.
2.2 Reliability . 41 3.2.3 Survivability . 42 3.3 Secure Edge Intelligence . 43 3.
3.1 Background and Motivation 44 3.3.2 Design of Detection Module 45 3.3.3 Challenges against Poisoning Attacks . 48 3.4 Summary 49 4 Edge Intelligence for Intrusion Detection 51 4.
1 Edge Cyberinfrastructure . 51 4.2 Edge AI Engine 53 4.2.1 Feature Engineering . 53 4.2.2 Model Learning .
54 4.2.3 Model Update 56 4.2.4 Predictive Analytics . 56 4.3 Threat Intelligence 57 4.4 Preliminary Study .
57 4.4.1 Dataset 57 4.4.2 Environment Setup . 59 4.4.3 Performance Evaluation .
59 vii 4.5 Summary 63 5 Robust Intrusion Detection 65 5.1 Preliminaries 65 5.1.1 Median Absolute Deviation . 65 5.1.2 Mahalanobis Distance 66 5.
2 Robust Intrusion Detection . 67 5.2.1 Problem Formulation 67 5.2.2 Step 1: Robust Data Preprocessing 68 5.2.3 Step 2: Bagging for Labeled Anomalies 69 5.
2.4 Step 3: One-Class SVM for Unlabeled Samples . 70 5.2.5 Step 4: Final Classifier . 74 5.3 Experiment and Evaluation . 76 5.
3.1 Experiment Setup 76 5.3.2 Performance Evaluation . 81 5.4 Summary 92 6 Efficient Preprocessing Scheme for Anomaly Detection 93 6.1 Efficient Anomaly Detection . 93 6.
1.1 Related Work . 95 6.1.2 Principal Component Analysis . 97 6.2 Efficient Preprocessing Scheme for Anomaly Detection . 98 6.
2.1 Robust Preprocessing Scheme . 99 6.2.2 Real-Time Processing 103 viii 6.2.3 Discussions 103 6.3 Case Study .
104 6.3.1 Description of the Raw Data 105 6.3.2 Experiment 106 6.3.3 Results 108 6.4 Summary 109 7 Privacy Preservation in the Era of Big Data 111 7.
1 Privacy Preservation Approaches 111 7.1.1 Anonymization 111 7.1.2 Differential Privacy . 112 7.1.3 Federated Learning .
114 7.1.4 Homomorphic Encryption 116 7.1.5 Secure Multi-Party Computation . 117 7.1.6 Discussions 118 7.
2 Privacy-Preserving Anomaly Detection . 120 7.2.1 Literature Review 121 7.2.2 Preliminaries . 123 7.2.
3 System Model and Security Model 124 7.3 Objectives and Workflow . 126 7.3.1 Objectives . 126 7.3.2 Workflow .
128 7.4 Predicate Encryption based Anomaly Detection . 129 7.4.1 Procedures 129 ix 7.4.2 Development of Predicate . 131 7.
4.3 Deployment of Anomaly Detection 132 7.5 Case Study and Evaluation . 134 7.5.1 Overhead . 134 7.5.
2 Detection . 136 7.6 Summary 137 8 Adversarial Examples: Challenges and Solutions 139 8.1 Adversarial Examples . 139 8.1.1 Problem Formulation in Machine Learning 140 8.1.
2 Creation of Adversarial Examples . 141 8.1.3 Targeted and Non-Targeted Attacks . 141 8.1.4 Black-Box and White-Box Attacks 142 8.1.
5 Defenses against Adversarial Examples 142 8.2 Adversarial Attacks in Security Applications 143 8.2.1 Malware 143 8.2.2 Cyber Intrusions . 143 8.3 Case Study: Improving Adversarial Attacks Against Malware Detectors 144 8.
3.1 Background 144 8.3.2 Adversarial Attacks on Malware Detectors 145 8.3.3 MalConv Architecture 147 8.3.4 Research Idea 148 8.
4 Case Study: A Metric for Machine Learning Vulnerability to Adversarial Examples . 149 8.4.1 Background 149 8.4.2 Research Idea 150 8.5 Case Study: Protecting Smart Speakers from Adversarial Voice Commands . 153 8.
5.1 Background 153 8.5.2 Challenges 154 8.5.3 Directions and Tasks 155 8.6 Summary 157 xi.