Browse Subject Headings
Principles of Superconducting Quantum Computers
Principles of Superconducting Quantum Computers
Click to enlarge
Author(s): Stancil, Daniel D.
ISBN No.: 9781119750758
Pages: 384
Year: 202204
Format: E-Book
Price: $ 161.32
Status: Out Of Print

1 Qubits, Gates, and Circuits 1 1.1 Bits and Qubits . 1 1.1.1 Circuits in Space vs. Circuits in Time . 1 1.1.


2 Superposition . 2 1.1.3 No Cloning . 3 1.1.4 Reversibility . 4 1.


1.5 Entanglement . 4 1.2 Single-Qubit States . 5 1.3 Measurement and the Born Rule . 6 1.4 Unitary Operations and Single-Qubit Gates .


7 1.5 Two-Qubit Gates . 9 1.5.1 Two-Qubit States . 9 1.5.2 Two-Qubit Gates .


11 1.5.3 Controlled-NOT . 13 1.6 Bell State . 14 1.7 No Cloning, Revisited . 15 1.


8 Example: Deutsch''s Problem . 17 1.9 Key Characteristics of Quantum Computing . 20 1.10 Quantum Computing Systems . 22 1.11 Exercises . 26 2 Physics of Single Qubit Gates 29 2.


1 Requirements for a Quantum Computer . 29 2.2 Single Qubit Gates . 30 2.2.1 Rotations . 30 2.2.


2 Two State Systems . 38 2.2.3 Creating Rotations: Rabi Oscillations . 44 2.3 Quantum State Tomography . 49 2.4 Expectation Values and the Pauli Operators .


51 2.5 Density Matrix . 52 2.6 Exercises . 56 iii iv CONTENTS 3 Physics of Two Qubit Gates 59 3.1 √ iSWAP Gate . 59 3.2 Coupled Tunable Qubits .


61 3.3 Fixed-frequency Qubits . 64 3.4 Other Controlled Gates . 66 3.5 Two-qubit States and the Density Matrix . 68 3.6 Exercises .


71 4 Superconducting Quantum Computer Systems 73 4.1 Transmission Lines . 73 4.1.1 General Transmission Line Equations . 73 4.1.2 Lossless Transmission Lines .


75 4.1.3 Transmission Lines with Loss . 77 4.2 Terminated Lossless Line . 82 4.2.1 Reflection Coefficient .


82 4.2.2 Power (Flow of Energy) and Return Loss . 84 4.2.3 Standing Wave Ratio (SWR) . 85 4.2.


4 Impedance as a Function of Position . 86 4.2.5 Quarter Wave Transformer . 88 4.2.6 Coaxial, Microstrip, and Co-planar Lines . 89 4.


3 S Parameters . 92 4.3.1 Lossless Condition . 93 4.3.2 Reciprocity . 94 4.


4 Transmission (ABCD) Matrices . 94 4.5 Attenuators . 99 4.6 Circulators and Isolators . 100 4.7 Power Dividers/Combiners . 102 4.


8 Mixers . 105 4.9 Low-pass Filters . 111 4.10 Noise . 112 4.10.1 Thermal Noise .


113 4.10.2 Equivalent Noise Temperature . 116 4.10.3 Noise Factor and Noise Figure . 117 4.10.


4 Attenuators and Noise . 118 4.10.5 Noise in Cascaded Systems . 120 4.11 Low Noise Amplifiers . 121 4.12 Exercises .


123 5 Resonators: Classical Treatment 125 5.1 Parallel Lumped Element Resonator . 125 5.2 Capacitive Coupling to a Parallel Lumped-Element Res[1]onator . 128 5.3 Transmission Line Resonator . 130 5.4 Capacitive Coupling to a Transmission Line Resonator .


133 5.5 Capacitively-Coupled Lossless Resonators . 136 CONTENTS v 5.6 Classical Model of Qubit Readout . 142 5.7 Exercises . 146 6 Resonators: Quantum Treatment 149 6.1 Lagrangian Mechanics .


149 6.1.1 Hamilton''s Principle . 149 6.1.2 Calculus of Variations . 150 6.1.


3 Lagrangian Equation of Motion . 151 6.2 Hamiltonian Mechanics . 153 6.3 Harmonic Oscillators . 153 6.3.1 Classical Harmonic Oscillator .


154 6.3.2 Quantum Mechanical Harmonic Oscillator . 156 6.3.3 Raising and Lowering Operators . 158 6.3.


4 Can a Harmonic Oscillator be used as a Qubit? . 160 6.4 Circuit Quantum Electrodynamics . 162 6.4.1 Classical LC Resonant Circuit . 162 6.4.


2 Quantization of the LC Circuit . 163 6.4.3 Circuit Electrodynamic Approach for General Cir[1]cuits . 164 6.4.4 Circuit Model for Transmission Line Resonator . 165 6.


4.5 Quantizing a Transmission Line Resonator . 168 6.4.6 Quantized Coupled LC Resonant Circuits . 169 6.4.7 Schrödinger, Heisenberg, and Interaction Pictures 172 6.


4.8 Resonant Circuits and Qubits . 175 6.4.9 The Dispersive Regime . 178 6.5 Exercises . 182 7 Theory of Superconductivity 183 7.


1 Bosons and Fermions . 184 7.2 Bloch Theorem . 186 7.3 Free Electron Model for Metals . 188 7.3.1 Discrete States in Finite Samples .


189 7.3.2 Phonons . 191 7.3.3 Debye Model . 193 7.3.


4 Electron-Phonon Scattering and Electrical Con[1]ductivity . 194 7.3.5 Perfect Conductor vs. Superconductor . 196 7.4 Bardeen, Cooper and Schrieffer Theory of Superconduc[1]tivity . 199 7.


4.1 Cooper Pair Model . 199 7.4.2 Dielectric Function . 203 7.4.3 Jellium .


204 7.4.4 Scattering Amplitude and Attractive Electron-Electron Interaction . 208 7.4.5 Interpretation of Attractive Interaction . 209 vi CONTENTS 7.4.


6 Superconductor Hamiltonian . 210 7.4.7 Superconducting Ground State . 211 7.5 Electrodynamics of Superconductors . 215 7.5.


1 Cooper Pairs and the Macroscopic Wave Function 215 7.5.2 Potential Functions . 216 7.5.3 London Equations . 217 7.5.


4 London Gauge . 219 7.5.5 Penetration Depth . 220 7.5.6 Flux Quantization . 221 7.


6 Chapter Summary . 223 7.7 Exercises . 224 8 Josephson Junctions 225 8.1 Tunneling . 225 8.1.1 Reflection from a Barrier .


226 8.1.2 Finite Thickness Barrier . 229 8.2 Josephson Junctions . 231 8.2.1 Current and Voltage Relations .


231 8.2.2 Josephson Junction Hamiltonian . 235 8.2.3 Quantized Josephson Junction Analysis . 237 8.3 Superconducting Quantum Interference Devices (SQUIDs) 239 8.


4 Josephson Junction Parametric Amplifiers . 241 8.5 Exercises . 242 9 Errors and Error Mitigation 245 9.1 NISQ Processors . 245 9.2 Decoherence . 246 9.


3 State Preparation and Measurement.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings