Preface to Third Edition xxi Part I Introduction 1 1 Welding Processes 3 1.1 Overview 3 1.1.1 Fusion Welding Processes 3 1.1.1.1 Power Density of Heat Source 4 1.1.
1.2 Welding Processes and Materials 5 1.1.1.3 Types of Joints and Welding Positions 7 1.1.2 Solid-State Welding Processes 8 1.2 Gas Welding 8 1.
2.1 The Process 8 1.2.2 Three Types of Flames 9 1.2.2.1 Neutral Flame 9 1.2.
2.2 Reducing Flame 9 1.2.2.3 Oxidizing Flame 9 1.2.3 Advantages and Disadvantages 10 1.3 Arc Welding 10 1.
3.1 Shielded Metal Arc Welding 10 1.3.1.1 Functions of Electrode Covering 10 1.3.1.2 Advantages and Disadvantages 11 1.
3.2 Gas-Tungsten Arc Welding 11 1.3.2.1 The Process 11 1.3.2.2 Polarity 12 1.
3.2.3 Electrodes 13 1.3.2.4 Shielding Gases 13 1.3.2.
5 Advantages and Disadvantages 13 1.3.3 Plasma Arc Welding 14 1.3.3.1 The Process 14 1.3.3.
2 Arc Initiation 14 1.3.3.3 Keyholing 15 1.3.3.4 Advantages and Disadvantages 15 1.3.
4 Gas-Metal Arc Welding 16 1.3.4.1 The Process 16 1.3.4.2 Shielding Gases 16 1.3.
4.3 Modes of Metal Transfer 17 1.3.4.4 Advantages and Disadvantages 18 1.3.5 Flux-Cored Arc Welding 18 1.3.
5.1 The Process 18 1.3.6 Submerged Arc Welding 19 1.3.6.1 The Process 19 1.3.
6.2 Advantages and Disadvantages 20 1.3.7 Electroslag Welding 20 1.3.7.1 The Process 20 1.3.
7.2 Advantages and Disadvantages 21 1.4 High-Energy-Beam Welding 21 1.4.1 Electron Beam Welding 21 1.4.1.1 The Process 21 1.
4.1.2 Advantages and Disadvantages 23 1.4.2 Laser Beam Welding 24 1.4.2.1 The Process 24 1.
4.2.2 Reflectivity 24 1.4.2.3 Shielding Gas 25 1.4.2.
4 Laser-Assisted Arc Welding 25 1.4.2.5 Advantages and Disadvantages 26 1.5 Resistance Spot Welding 26 1.6 Solid-State Welding 27 1.6.1 Friction Stir Welding 27 1.
6.2 Friction Welding 29 1.6.3 Explosion and Magnetic-Pulse Welding 31 1.6.4 Diffusion Welding 31 Examples 32 References 33 Further Reading 34 Problems 35 2 Heat Flow in Welding 37 2.1 Heat Source 37 2.1.
1 Heat Source Efficiency 37 2.1.1.1 Definition 37 2.1.1.2 Measurements 38 2.1.
1.3 Heat Source Efficiencies in Various Welding Processes 41 2.1.2 Melting Efficiency 42 2.1.3 Power Density Distribution of Heat Source 43 2.1.3.
1 Effect of Electrode Tip Angle 43 2.1.3.2 Measurements 43 2.2 Heat Flow During Welding 45 2.2.1 Response of Material to Welding Heat Source 45 2.2.
2 Rosenthal''s Equations 45 2.2.2.1 Rosenthal''s Two-Dimensional Equation 46 2.2.2.2 Rosenthal''s Three-Dimensional Equation 47 2.2.
2.3 Step-by-Step Application of Rosenthal''s Equations 48 2.2.3 Adams'' Equations 49 2.3 Effect of Welding Conditions 49 2.4 Computer Simulation 52 2.5 Weld Thermal Simulator 53 2.5.
1 The Equipment 53 2.5.2 Applications 54 2.5.3 Limitations 54 Examples 54 References 57 Further Reading 59 Problems 59 3 Fluid Flow in Welding 61 3.1 Fluid Flow in Arcs 61 3.1.1 Sharp Electrode 61 3.
1.2 Flat-End Electrode 63 3.2 Effect of Metal Vapor on Arcs 63 3.2.1 GasâTungsten Arc Welding 63 3.2.2 GasâMetal Arc Welding 65 3.3 Arc Power- and Current-Density Distributions 68 3.
4 Fluid Flow in Weld Pools 69 3.4.1 Driving Forces for Fluid Flow 69 3.4.2 Heiple''s Theory for Weld Pool Convection 71 3.4.3 Physical Simulation of Fluid Flow and Weld Penetration 72 3.4.
4 Computer Simulation of Fluid Flow and Weld Penetration 75 3.5 Flow Oscillation and Ripple Formation 77 3.6 Active Flux GTAW 80 3.7 Resistance Spot Welding 81 Examples 84 References 85 Further Reading 88 Problems 88 4 Mass and Filler -Metal Transfer 91 4.1 Convective Mass Transfer in Weld Pools 91 4.2 Evaporation of Volatile Solutes 94 4.3 Filler-Metal Drop Explosion and Spatter 96 4.4 Spatter in GMAW of Magnesium 100 4.
5 Diffusion Bonding 100 Examples 103 References 104 Problems 105 5 Chemical Reactions in Welding 107 5.1 Overview 107 5.1.1 Effect of Nitrogen, Oxygen, and Hydrogen 107 5.1.2 Protection Against Air 107 5.1.3 Evaluation of Weld Metal Properties 108 5.
2 Gas-Metal Reactions 111 5.2.1 Thermodynamics of Reactions 111 5.2.2 Hydrogen 113 5.2.2.1 Magnesium 113 5.
2.2.2 Aluminum 113 5.2.2.3 Titanium 116 5.2.2.
4 Copper 116 5.2.2.5 Steels 116 5.2.3 Nitrogen 118 5.2.3.
1 Steel 118 5.2.3.2 Titanium 121 5.2.4 Oxygen 121 5.2.4.
1 Magnesium 121 5.2.4.2 Aluminum 121 5.2.4.3 Titanium 121 5.2.
4.4 Steel 122 5.3 Slag-Metal Reactions 125 5.3.1 Thermochemical Reactions 125 5.3.1.1 Decomposition of Flux 125 5.
3.1.2 Removal of S and P from Liquid Steel 126 5.3.2 Effect of Flux on Weld Metal Oxygen 127 5.3.3 Types of Fluxes, Basicity Index, and Weld Metal Properties 127 5.3.
4 Basicity Index 128 5.3.5 Electrochemical Reactions 130 Examples 135 References 136 Further Reading 140 Problems 140 6 Residual Stresses, Distortion, and Fatigue 141 6.1 Residual Stresses 141 6.1.1 Development of Residual Stresses 141 6.1.1.
1 Stresses Induced By Welding 141 6.1.1.2 Welding 141 6.1.2 Analysis of Residual Stresses 143 6.2 Distortion 145 6.2.
1 Cause 145 6.2.2 Remedies 146 6.3 Fatigue 147 6.3.1 Mechanism 147 6.3.2 Fractography 147 6.
3.3 S-N Curves 150 6.3.4 Effect of Joint Geometry 150 6.3.5 Effect of Stress Raisers 151 6.3.6 Effect of Corrosion 152 6.
3.7 Remedies 152 6.3.7.1 Shot Peening 152 6.3.7.2 Reducing Stress Raisers 153 6.
3.7.3 Laser Shock Peening 154 6.3.7.4 Use of Low-Transformation-Temperature Fillers 154 Examples 154 References 155 Further Reading 156 Problems 156 Part II The Fusion Zone 157 7 Introduction to Solidification 159 7.1 Solute Redistribution During Solidification 159 7.1.
1 Directional Solidification 159 7.1.2 Equilibrium Segregation Coefficient k 159 7.1.3 Four Cases of Solute Redistribution 161 7.2 Constitutional Supercooling 166 7.3 Solidification Modes 168 7.4 Microsegregation Caused by Solute Redistribution 171 7.
5 Secondary Dendrite Arm Spacing 174 7.6 Effect of Dendrite Tip Undercooling 177 7.7 Effect of Growth Rate 178 7.8 Solidification of Ternary Alloys 178 7.8.1 Liquidus Projection 178 7.8.2 Solidification Path 179 7.
8.3 Ternary Magnesium Alloys 180 7.8.4 Ternary Fe-Cr-Ni Alloys 182 7.8.4.1 Fe-Cr-Ni Phase Diagram 182 7.8.
4.2 Solidification Paths 185 7.8.4.3 Microstructure 186 Examples 189 References 191 Further Reading 193 Problems 193 8 Solidification Modes 195 8.1 Solidification Modes 195 8.1.1 Temperature Gradient and Growth Rate 195 8.
1.2 Variations in Growth Mode Across Weld 197 8.2 Dendrite Spacing and Cell Spacing 200 8.3 Effect of Welding Parameters 201 8.3.1 Solidification Mode 201 8.3.2 Dendrite and Cell Spacing 202 8.
4 Refining Microstructure Within Grains 203 8.4.1 Arc Oscillation 203 8.4.2 Arc Pulsation 205 Examples 205 References 206 Further Reading 207 Problems 207 9 Nucleation and Growth of Grains 209 9.1 Epitaxial Growth at the Fusion Line 209 9.2 Nonepitaxial Growth at the Fusion Line 212 9.2.
1 Mismatching Crystal Structures 212 9.2.2 Nondendritic Equiaxed Grains 213 9.3 Growth of Columnar Grains 214 9.4 Effect of Welding Parameters on Columnar Grains 215 9.5 Control of Columnar Grains 218 9.6 Nucleation Mechanisms of Equiaxed Grains 219 9.6.
1 Microstructure Around Pool Boundary 219 9.6.2 Dendrite Fragmentation 220 9.6.3 Grain Detachment 222 9.6.4 Heterogeneous Nucleation 222 9.6.
5 Effect of Welding Parameters on Heterogeneous Nucleation 225 9.6.6 Surface Nucleation 228 9.7 Grain Refining 228 9.7.1 Inoculation 228 9.7.2 Weld Pool Stirring 229 9.
7.2.1 Magnetic Weld Pool Stirring 229 9.7.2.2 Ultrasonic Weld Pool Stirring 229 9.7.3 Arc Pulsation 232 9.
7.4 Arc Oscillation 232 9.8 Identifying Grain-Refining Mechanisms 233 9.8.1 Overlap Welding Procedure 233 9.8.2 Identifying the Grain-Refining Mechanism 235 9.8.
3 Effect of Arc Oscillation on Dendrite Fragmentation 236 9.8.4 Effect of Arc Oscillation on Constitutional Supercooling 236 9.8.5 Effect of Composition on Grain Refining by Arc Oscillation 238 9.9 Grain-Boundary Migration 238 Examples 239 References 240 Further Reading 245 Problems 246 10 Microsegregation 247 10.1 Microsegregation in Welds 247 10.2 Effect of Travel Speed on Microsegregation 249 10.
3 Effect of Primary Solidification Phase on Microsegregation 252 10.4 Effect of Maximum Solid Solubility on Microsegregation 253 Examples 259 References 261.