List of Contributors xv Series Preface xvii Preface xix 1 Fundamental Optical Properties of Materials I 1 S.O. Kasap, W.C. Tan, Jai Singh, and Asim K. Ray 1.1 Introduction 1 1.2 Optical Constants n and K 2 1.
2.1 Refractive Index and Extinction Coefficient 2 1.2.2 n and K , and Kramers-Kronig Relations 5 1.3 Refractive Index and Dispersion 7 1.3.1 Cauchy Dispersion Relation 7 1.3.
2 Sellmeier Equation 8 1.3.3 Refractive Index of Semiconductors 10 1.3.3.1 Refractive Index of Crystalline Semiconductors 10 1.3.3.
2 Bandgap and Temperature Dependence 11 1.3.4 Refractive Index of Glasses 11 1.3.5 Wemple-DiDomenico Dispersion Relation 14 1.3.6 Group Index 15 1.4 The Swanepoel Technique: Measurement of n and ? for Thin Films on Substrates 16 1.
4.1 Uniform Thickness Films 16 1.4.2 Thin Films with Non-uniform Thickness 22 1.5 Transmittance and Reflectance of a Partially Transparent Plate 25 1.6 Optical Properties and Diffuse Reflection: Schuster-Kubelka-Munk Theory 27 1.7 Conclusions 31 Acknowledgments 31 References 32 2 Fundamental Optical Properties of Materials II 37 S.O.
Kasap, K. Koughia, Jai Singh, Harry E. Ruda, and Asim K. Ray 2.1 Introduction 37 2.2 Lattice or Reststrahlen Absorption and Infrared Reflection 40 2.3 Free Carrier Absorption (FCA) 42 2.4 Band-to-Band or Fundamental Absorption (Crystalline Solids) 45 2.
5 Impurity Absorption and Rare-Earth Ions 48 2.6 Effect of External Fields 54 2.6.1 Electro-Optic Effects 54 2.6.2 Electro-Absorption and Franz-Keldysh Effect 55 2.6.3 Faraday Effect 56 2.
7 Effective Medium Approximations 58 2.8 Conclusions 61 Acknowledgments 61 References 62 3 Optical Properties of Disordered Condensed Matter 67 Koichi Shimakawa, Jai Singh, and S.K. O''Leary 3.1 Introduction 67 3.2 Fundamental Optical Absorption (Experimental) 69 3.2.1 Amorphous Chalcogenides 69 3.
2.2 Hydrogenated Nano-Crystalline Silicon (nc-Si:H) 72 3.3 Absorption Coefficient (Theory) 74 3.4 Compositional Variation of the Optical Bandgap 79 3.4.1 In Amorphous Chalcogenides 79 3.5 Conclusions 80 References 80 4 Optical Properties of Glasses 83 Andrew Edgar 4.1 Introduction 83 4.
2 The Refractive Index 84 4.3 Glass Interfaces 86 4.4 Dispersion 88 4.5 Sensitivity of the Refractive Index 90 4.5.1 Temperature Dependence 90 4.5.2 Stress Dependence 91 4.
5.3 Magnetic Field Dependence--The Faraday Effect 92 4.5.4 Chemical Perturbations--Molar Refractivity 94 4.6 Glass Color 95 4.6.1 Coloration by Colloidal Metals and Semiconductors 95 4.6.
2 Optical Absorption in Rare-Earth-Doped Glass 96 4.6.3 Absorption by 3d Metal Ions 99 4.7 Fluorescence in Rare-Earth-Doped Glass 102 4.8 Glasses for Fiber Optics 104 4.9 Refractive Index Engineering 106 4.10 Glass and Glass-Fiber Lasers and Amplifiers 109 4.11 Valence Change Glasses 111 4.
12 Transparent Glass Ceramics 114 4.12.1 Introduction 114 4.12.2 Theoretical Basis for Transparency 116 4.12.3 Rare-Earth-Doped Transparent Glass Ceramics for Active Photonics 120 4.12.
4 Ferroelectric Transparent Glass Ceramics 121 4.12.5 Transparent Glass Ceramics for X - ray Storage Phosphors 121 4.13 Conclusions 124 References 124 5 Concept of Excitons 129 Jai Singh, Harry E. Ruda, M.R. Narayan, and D. Ompong 5.
1 Introduction 129 5.2 Excitons in Crystalline Solids 130 5.2.1 Excitonic Absorption in Crystalline Solids 133 5.3 Excitons in Amorphous Semiconductors 135 5.3.1 Excitonic Absorption in Amorphous Solids 137 5.4 Excitons in Organic Semiconductors 139 5.
4.1 Photoexcitation and Formation of Excitons 140 5.4.1.1 Photoexcitation of Singlet Excitons Due to Exciton-Photon Interaction 141 5.4.1.2 Excitation of Triplet Excitons 142 5.
4.2 Exciton Up-Conversion 147 5.4.3 Exciton Dissociation 148 5.4.3.1 Conversion from Frenkel to CT Excitons 151 5.4.
3.2 Dissociation of CT Excitons 152 5.5 Conclusions 153 References 154 6 Photoluminescence 157 Takeshi Aoki 6.1 Introduction 157 6.2 Fundamental Aspects of Photoluminescence (PL) in Materials 158 6.2.1 Intrinsic Photoluminescence 159 6.2.
2 Extrinsic Photoluminescence 160 6.2.3 Up-Conversion Photoluminescence (UCPL) 162 6.2.4 Other Related Optical Transitions 163 6.3 Experimental Aspects 164 6.3.1 Static PL Spectroscopy 164 6.
3.2 Photoluminescence Excitation Spectroscopy (PLE) and Photoluminescence Absorption Spectroscopy (PLAS) 167 6.3.3 Time Resolved Spectroscopy (TRS) 168 6.3.4 Time-Correlated Single Photon Counting (TCSPC) 171 6.3.5 Frequency-Resolved Spectroscopy (FRS) 172 6.
3.6 Quadrature Frequency Resolved Spectroscopy (QFRS) 173 6.4 Photoluminescence Lifetime Spectroscopy of Amorphous Semiconductors by QFRS Technique 175 6.4.1 Overview 175 6.4.2 Dual-Phase Double Lock-in (DPDL) QFRS Technique 176 6.4.
3 Exploring Broad PL Lifetime Distribution in a-Si:H by Wideband QFRS 178 6.4.3.1 Effects of Excitation Intensity, Excitation, and Emission Energies 179 6.4.3.2 Temperature Dependence 184 6.4.
3.3 Effect of Electric and Magnetic Fields 185 6.4.4 Residual PL Decay of a-Si:H 189 6.5 QFRS on Up-Conversion Photoluminescence (UCPL) of RE-Doped Materials 192 6.6 Conclusions 197 Acknowledgments 198 References 198 7 Photoluminescence, Photoinduced Changes, and Electroluminescence in Noncrystalline Semiconductors 203 Jai Singh 7.1 Introduction 203 7.2 Photoluminescence 205 7.
2.1 Radiative Recombination Operator and Transition Matrix Element 206 7.2.2 Rates of Spontaneous Emission 211 7.2.2.1 At Nonthermal Equilibrium 212 7.2.
2.2 At Thermal Equilibrium 214 7.2.2.3 Determining E 0 215 7.2.3 Results of Spontaneous Emission and Radiative Lifetime 216 7.2.
4 Temperature Dependence of PL 222 7.2.5 Excitonic Concept 223 7.3 Photoinduced Changes in Amorphous Chalcogenides 225 7.3.1 Effect of Photo-Excitation and Phonon Interaction 226 7.3.2 Excitation of a Single Electron-Hole Pair 228 7.
3.3 Pairing of Like Excited Charge Carriers 229 7.4 Radiative Recombination of Excitons in Organic Semiconductors 232 7.4.1 Rate of Fluorescence 233 7.4.2 Rate of Phosphorescence 233 7.4.
3 Organic Light Emitting Diodes (OLEDs) 234 7.4.3.1 Second- and Third-Generation OLEDs: TADF 235 7.5 Conclusions 236 Acknowledgments 236 References 237 8 Photoinduced Bond Breaking and Volume Change in Chalcogenide Glasses 241 Sandor Kugler, Rozália Lukács, and Koichi Shimakawa 8.1 Introduction 241 8.2 Atomic-Scale Computer Simulations of Photoinduced Volume Changes 243 8.3 Effect of Illumination 244 8.
4 Kinetics of Volume Change 245 8.4.1 a-Se 245 8.4.2 a-As2Se3 246 8.5 Additional Remarks 248 8.6 Conclusions 249 References 249 9 Properties and Applications of Photonic Crystals 251 Harry E. Ruda and Naomi Matsuura 9.
1 Introduction 251 9.2 PC Overview 252 9.2.1 Introduction to PCs 252 9.2.2 Nanoengineering of PC Architectures 253 9.2.3 Materials Selection for PCs 255 9.
3 Tunable PCs 255 9.3.1 Tuning PC Response by Changing the Refractive Index of Constituent Materials 256 9.3.1.1 PC Refractive Index Tuning Using Light 256 9.3.1.
2 PC Refractive Index Tuning Using an Applied Electric Field 256 9.3.1.3 Refractive Index Tuning of Infiltrated PCs 257 9.3.1.4 PC Refractive Index Tuning by Altering the Concentration of Free Carriers (Using Electric Field or Temperature) in Semiconductor-Based PCs 257 9.3.
2 Tuning PC Response by Altering the Physical Structure of the PC 258 9.3.2.1 Tuning PC Response Using Temperature 258 9.3.2.2 Tuning PC Response Using Magnetism 258 9.3.
2.3 Tuning PC Response Using Strain 258 9.3.2.4 Tuning PC Response Using Piezoelectric Effects 259 9.3.2.5 Tuning PC Response Using MEMS Actuation 260 9.
4 Selected Applications of PC 260 9.4.1 Waveguide Devices 261 9.4.2 Dispersive Devices 262 9.4.3 Add/Drop Multiplexing Devices 262 9.4.
4 Applications of PCs for Light-Emitting Diodes (LEDs) and Lasers 263 9.5 Conclusions 265 Acknowledgments 265 References 265 10 Nonlinear Optical Properties of Photonic Glasses 269 Keiji Tanaka 10.1 Introduction 269 10.2 Photonic Glass 271 10.3 Nonlinear Absorption and Refractivity 272 10.3.1 Fundamentals 272 10.3.
2 Two-Photon Absorption 275 10.3.3 Nonlinear Refractivity 278 10.4 Nonlinear Excitation-Induced Structural Changes 280 10.4.1 Fundamentals 280 10.4.2 Oxides 281 10.
4.3 Chalcogenides 283 10.5 Conclusions 285 10.A Addendum: Perspectives on Optical Devices 286 References 288 11 Optical Properties of Organic Semiconductors 295 Takashi Kobayashi and Hiroyoshi Naito 11.1 Introduction 295 11.2 Molecular Structure of Ï-Conjugated Polymers 296 11.3 Theoretical Models 298.