Foreword xvii Preface to the Sixth Edition xix The Comet and Titanic Disasters: Fiction Foreshadows Truth ! xix Additional References for Video Entitled "The Comet and Titanic Disasters: Fiction Foreshadows Truth !!" xix Stress Intensity Factor Formulations xx Elliptical and Penny-Shaped Stress Intensity Factors xx Multiplicity of Y-calibration Factors xx Design Concepts xx Estimation of Crack Tip Plastic Zone Size and Shear Lip Development xx Compact-Tension Fracture Toughness Test xx Fatigue Fracture xxi Extensive Folder of Powerpoint Slides xxii Chapter Thirteen: Final Thoughts xxii Dedication xxii Acknowledgments xxii About the Authors xxv Section One Recoverable and Nonrecoverable Deformation 1 Chapter 1 Elastic Response of Solids 3 1.1 Mechanical Testing 3 1.2 Definitions of Stress and Strain 4 1.3 Stress-Strain Curves for Uniaxial Loading 8 1.3.1 Survey of Tensile Test Curves 8 1.3.2 Uniaxial Linear Elastic Response 9 1.
3.3 Young''s Modulus and Polymer Structure 13 1.3.3.1 Thermoplastic Behavior 13 1.3.3.2 Rigid Thermosets 14 1.
3.3.3 Rubber Elasticity 15 1.3.4 Compression Testing 17 1.3.5 Failure by Elastic Buckling 17 1.3.
6 Resilience and Strain Energy Density 19 1.3.7 Definitions of Strength 19 1.3.8 Toughness 22 1.4 Nonaxial Testing 23 1.4.1 Bend Testing 23 1.
4.2 Shear and Torsion Testing 26 1.5 Multiaxial Linear Elastic Response 27 1.5.1 Additional Isotropic Elastic Constants 27 1.5.2 Multiaxial Loading 28 1.5.
2.1 Thin-Walled Pressure Vessels 30 1.5.2.2 Special Cases of Multiaxial Loading 32 1.5.3 Instrumented Indentation 33 1.6 Elastic Anisotropy 34 1.
6.1 Stiffness and Compliance Matrices 34 1.6.1.1 Symmetry Classes 36 1.6.1.2 Loading Along an Arbitrary Axis 37 1.
6.2 Composite Materials 40 1.6.3 Isostrain Analysis 41 1.6.4 Isostress Analysis 43 1.6.5 Aligned Short Fibers 44 1.
6.6 Strength of Composites 47 1.6.6.1 Effects of Matrix Behavior 47 1.6.6.2 Effects of Fiber Orientation 48 1.
7 Thermal Stresses and Thermal Shock-Induced Failure 50 1.7.1 Upper Bound Thermal Stress 50 1.7.2 Cooling Rate and Thermal Stress 54 References 55 Further Readings 56 Problems 56 Review 56 Practice 57 Design 59 Extend 60 Chapter 2 Yielding and Plastic Flow 63 2.1 Dislocations in Metals and Ceramics 63 2.1.1 Strength of a Perfect Crystal 63 2.
1.2 The Need for Lattice Imperfections: Dislocations 65 2.1.3 Observation of Dislocations 67 2.1.4 Lattice Resistance to Dislocation Movement: The Peierls Stress 69 2.1.4.
1 Peierls Stress Temperature Sensitivity 70 2.1.4.2 Effect of Dislocation Orientation on Peierls Stress 71 2.1.5 Characteristics of Dislocations 72 2.1.6 Elastic Properties of Dislocations 75 2.
1.7 Partial Dislocations 78 2.1.7.1 Movement of Partial Dislocations 80 2.2 Slip 81 2.2.1 Crystallography of Slip 81 2.
2.2 Geometry of Slip 84 2.2.3 Slip in Polycrystals 87 2.3 Yield Criteria for Metals and Ceramics 88 2.4 Post-Yield Plastic Deformation 90 2.4.1 Strain Hardening 90 2.
4.2 Plastic Instability and Necking 93 2.4.2.1 Strain Distribution in a Tensile Specimen 94 2.4.2.2 Extent of Uniform Strain 95 2.
4.2.3 True Stress Correction 95 2.4.2.4 Failure of the Necked Region 96 2.4.3 Upper Yield Point Behavior 99 2.
4.4 Temperature and Strain-Rate Effects in Tension 100 2.5 Slip in Single Crystals and Textured Materials 102 2.5.1 Geometric Hardening and Softening 103 2.5.2 Crystallographic Textures (Preferred Orientations) 105 2.5.
3 Plastic Anisotropy 108 2.6 Deformation Twinning 111 2.6.1 Comparison of Slip and Twinning Deformations 111 2.6.2 Heterogeneous Plastic Tensile Behavior 113 2.6.3 Stress Requirements for Twinning 113 2.
6.4 Geometry of Twin Formation 114 2.6.5 Elongation Potential of Twin Deformation 116 2.6.6 Twin Shape 116 2.6.7 Twinning in HCP Crystals 117 2.
6.8 Twinning in BCC and FCC Crystals 120 2.7 Plasticity in Polymers 120 2.7.1 Polymer Structure: General Remarks 120 2.7.1.1 Side Groups and Chain Mobility 121 2.
7.1.2 Side Groups and Crystallinity 123 2.7.1.3 Morphology of Amorphous and Crystalline Polymers 124 2.7.1.
4 Polymer Additions 127 2.7.2 Plasticity Mechanisms 128 2.7.2.1 Amorphous Polymers 128 2.7.2.
2 Semi-crystalline Polymers 130 2.7.3 Macroscopic Response of Ductile Polymers 131 2.7.4 Yield Criteria 133 References 136 Problems 139 Review 139 Practice 140 Design 141 Extend 141 Chapter 3 Controlling Strength 143 3.1 Strengthening: A Definition 143 3.2 Strengthening of Metals 143 3.2.
1 Dislocation Multiplication 143 3.2.2 Dislocation-Dislocation Interactions 146 3.3 Strain (Work) Hardening 151 3.4 Boundary Strengthening 155 3.4.1 Strength of Nanocrystalline and Multilayer Metals 156 3.5 Solid Solution Strengthening 158 3.
5.1 Yield-Point Phenomenon and Strain Aging 161 3.6 Precipitation Hardening 164 3.6.1 Microstructural Characteristics 164 3.6.2 Dislocation-Particle Interactions 167 3.7 Dispersion Strengthening 170 3.
8 Strengthening of Steel Alloys by Multiple Mechanisms 172 3.9 Metal-Matrix Composite Strengthening 175 3.9.1 Whisker-Reinforced Composites 175 3.9.2 Laminated Composites 176 3.10 Strengthening of Polymers 177 3.11 Polymer-Matrix Composites 182 References 184 Further Reading 185 Problems 186 Review 186 Practice 186 Design 187 Extend 188 Chapter 4 Time-Dependent Deformation 189 4.
1 Time-Dependent Mechanical Behavior of Solids 189 4.2 Creep of Crystalline Solids: An Overview 191 4.3 Temperature-Stress-Strain-Rate Relations 195 4.4 Deformation Mechanisms 202 4.5 Superplasticity 205 4.6 Deformation-Mechanism Maps 208 4.7 Parametric Relations: Extrapolation Procedures for Creep Rupture Data 215 4.8 Materials for Elevated Temperature Use 220 4.
9 Viscoelastic Response of Polymers and the Role of Structure 227 4.9.1 Polymer Creep and Stress Relaxation 229 4.9.2 Mechanical Analogs 235 4.9.3 Dynamic Mechanical Testing and Energy-Damping Spectra 239 References 243 Problems 245 Review 245 Practice 246 Design 247 Extend 248 Section Two Fracture Mechanics of Engineering Materials 249 Chapter 5 Fracture: An Overview 251 5.1 Introduction 251 5.
2 Theoretical Cohesive Strength 253 5.3 Defect Population in Solids 254 5.3.1 Statistical Nature of Fracture: Weibull Analysis 255 5.3.1.1 Effect of Size on the Statistical Nature of Fracture 258 5.4 The Stress-Concentration Factor 260 5.
5 Notch Strengthening 264 5.6 External Variables Affecting Fracture 265 5.7 Characterizing the Fracture Process 266 5.8 Macroscopic Fracture Characteristics 269 5.8.1 Fractures of Metals 269 5.8.2 Fractures of Polymers 271 5.
8.3 Fractures of Glasses and Ceramics 273 5.8.4 Fractures of Engineering Composites 277 5.9 Microscopic Fracture Mechanisms 278 5.9.1 Microscopic Fracture Mechanisms: Metals 279 5.9.
2 Microscopic Fracture Mechanisms: Polymers 282 5.9.3 Microscopic Fracture Mechanisms: Glasses and Ceramics 287 5.9.4 Microscopic Fracture Mechanisms: Engineering Composites 289 5.9.5 Microscopic Fracture Mechanisms: Metal Creep Fracture 291 References 294 Problems 295 Review 295 Practice 296 Design 297 Extend 297 Chapter 6 Elements of Fracture Mechanics 299 6.1 Griffith Crack Theory 299 6.
1.1 Verification of the Griffith Relation 301 6.1.2 Griffith Theory and Propagation-Controlled Thermal Fracture 301 6.1.3 Adapting the Griffith Theory to Ductile Materials 304 6.1.4 Energy Release Rate Analysis 305 6.
2 Charpy Impact Fracture Testing 307 6.3 Related Polymer Fracture Test Methods 311 6.4 Limitations of the Transition Temperature Philosophy 312 6.5 Stress Analysis of Cracks 315 6.5.1 Multiplicity of Y Calibration Factors 323 6.5.2 The Role of K 326 FAILURE ANALYSIS CASE STUDY 6.
1: Fracture Toughness of Manatee Bones in Impact 327 6.6 Design Philosophy 328 6.7 Relation Between Energy Rate and Stress Field Approaches 330 6.8 Crack-Tip Plastic-Zone Size Estimation 332 6.8.1 Dugdale Plastic Strip Model 335 6.9 Fracture-Mode Transition: Plane Stress Versus Plane Strain 336 FAILURE ANALYSIS CASE STUDY 6.2: Analysis of Crack Development during Structural Fatigue Test 339 6.
10 Plane-Strain Fracture-Toughness Testing of Metals and Ceramics 341 6.11 Fracture Toughness of Engineering Alloys 344 6.11.1 Impact Energy--Fracture-Toughness Correlations 347 Rotor Forging 354 6.12 Plane-Stress Fracture-Toughness Testing 355 6.13 Toughness Determination from Crack-Opening Displacement Measurement 358 6.14 Fracture-Toughness Determination and Elastic-Plastic Analysis with the J Integral 360 6.14.
1 Determination of JIC 362 6.15 Other Fracture Models 368.