Browse Subject Headings
Solution-Processable Components for Organic Electronic Devices
Solution-Processable Components for Organic Electronic Devices
Click to enlarge
Author(s): Ulanski, Jacek
ISBN No.: 9783527344420
Pages: 688
Year: 201909
Format: Trade Cloth (Hard Cover)
Price: $ 379.43
Status: Out Of Print

Preface xiii 1 Precision and Purity of Conjugated Polymers - To be Ensured Before Processing 1 Thorsten Prechtl and Klaus Mullen 1.1 Polymer Design 1 1.2 Polymer Synthesis 6 1.3 Molecular Structure, Supramolecular Structure, and Interfaces 23 1.4 Beyond Solution Synthesis 30 1.5 Conclusions 33 Acknowledgments 34 References 34 2 Synthesis of Solution-Processable Nanoparticles of Inorganic Semiconductors and Their Application to the Fabrication of Hybrid Materials for Organic Electronics and Photonics 57 Adam Pron, Piotr Bujak, Malgorzata Zagorska, Namchul Cho, Tae-Dong Kim, and Kwang-Sup Lee 2.1 Synthesis and Characterization of Colloidal Semiconductor Nanocrystals 57 2.1.


1 Basic Physical Properties of Semiconductor Nanocrystals 57 2.1.2 Introduction to Basic Principles Governing the Synthesis of Nanocrystals 65 2.1.3 Preparation of Binary Nanocrystals 69 2.1.4 Preparation of Ternary and Quaternary Nanocrystals - Effect of Precursor Reactivity on Their Structure, Size, and Shape 78 2.1.


5 Core/Shell and Alloyed Nanocrystals - Preparation, Selection of Precursors, and Surfacial Ligand Exchange 92 2.2 Primary Ligand Identifications in Colloidal Nanocrystals of Inorganic Semiconductor - Methodology and Investigation Techniques 112 2.3 Exchange of Primary Ligands for Functional Ones 118 2.3.1 Exchange of Primary Organic Ligands for Inorganic Ones - Transfer of Nanocrystals to Highly Polar Solvents 118 2.3.2 Exchange of Primary Ligands for Organic Ligands of Different Polarity 121 2.3.


3 Exchange of Primary Ligands for Low- and High-Molecular-Weight Organic Ligands Exhibiting Semiconducting Properties 125 2.4 Preparation and Applications of Photopatternable Nanocrystals in the Microfabrication of 2D/3D Functional Structures 131 2.4.1 Nanocrystals with Photocleavable Groups 131 2.4.2 Nanocrystals with Photopolymerizable Groups 135 2.5 Energy and Charge Transfer in Semiconducting Nanocrystal-Based Hybrid Materials 140 2.5.


1 Nanocrystal-Decorated Hybrid Materials 140 2.5.2 Nanocrystal-Coupled Hybrid Materials 145 2.6 Synthesis, Electrical/Optical Properties, and Applications of Perovskite Nanomaterials 149 2.6.1 Synthesis of Perovskite Nanocrystals 149 2.6.2 Optical and Electrical Properties of Perovskite Nanocrystals 153 2.


6.3 Applications of Perovskite Nanocrystals 153 Acknowledgments 156 References 156 3 Synthesis of High k Nanoparticles by Controlled Radical Polymerization 181 Jiajun Yan, Joanna Pietrasik, Aleksandra Wypych-Puszkarz, Magdalena Ciekanska, and Krzysztof Matyjaszewski 3.1 Introduction to Controlled Radical Polymerization 181 3.2 Surface-Initiated Controlled Radical Polymerization 183 3.3 SI-CRP from Nanoparticles 189 3.3.1 Initiator/Chain Transfer Agent Immobilization on the Particle Surfaces 189 3.3.


2 Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) 190 3.3.2.1 Initiation 190 3.3.2.2 Propagation 190 3.3.


2.3 Termination 192 3.3.3 SI-RAFT 193 3.3.3.1 Kinetics of SI-CRP 194 3.4 Materials Prepared via SI-CRP 194 3.


5 High k Nanoparticles 197 3.5.1 Materials 197 3.5.2 Applications 199 3.5.3 Need for Polymer Modification 201 3.6 High k Hybrid Materials Prepared via SI-CRP 204 3.


7 Summary 210 Acknowledgments 211 References 211 4 Polymer Blending and Phase Behavior in Organic Electronics: Two Case Studies 227 Jasper J.Michels, Alexander Kunz, Hamed S. Dehsari, Kamal Asadi, and Paul W. M. Blom 4.1 Introduction 227 4.2 Calculation of the Ternary Phase Diagram of an Amorphous Mixture 229 4.3 Elimination of Charge Trapping in OLEDs by Polymer Blending 231 4.


3.1 Electron Trap Dilution in Organic Light-emitting Diodes 231 4.3.2 Solution-State Demixing and Microstructure Evolution in MEH-PPV: Insulator Blends 232 4.3.3 Operation and Performance of Blend-Based OLEDs 237 4.3.4 Section Summary 239 4.


4 Vapor-Induced Demixing in Polymer Films for Organic Memory Devices 240 4.4.1 Processing of Ferroelectric Polymers for Flexible Memory Applications 240 4.4.2 Predictions by Phase Diagram Calculations and Numerical Simulations 241 4.4.3 Film Casting and Morphological Analysis 246 4.4.


4 Memory Device Performance 250 4.4.5 Section Summary 251 4.5 General Outlook 252 Acknowledgments 252 4.A Experimental Procedures Relevant to Section 4.3 253 4.B Experimental Procedures Corresponding to Section 4.4 254 References 255 5 Photogeneration of Charge Carriers in Solution-Processable Organic Semiconductors 259 Heinz Bassler and Anna Kohler 5.


1 Introduction 259 5.2 Photogeneration in Single-Component Systems 260 5.2.1 The Onsager Treatment and Concept of Autoionization 260 5.2.2 Fullerenes as Models for Molecular Acceptor Materials 262 5.2.3 Conjugated Polymers as Donor Materials 264 5.


3 Photogeneration in Donor-Acceptors Systems 268 5.3.1 The Onsager-Braun Model 268 5.3.2 Experimental Characterization Techniques 271 5.4 Discussion of Contemporary Results 274 5.4.1 Forward Electron Transfer at the Donor-Acceptor Interface 274 5.


4.2 The "Hot versus Cold" Problem and the Impact of Charge Transfer State 277 5.4.3 Dissociation of Charge Transfer States 279 5.4.3.1 The Importance of Charge Delocalization 279 5.4.


3.2 The Effective Mass Model 283 5.4.3.3 Monte Carlo Simulations 287 5.4.4 Charge Recombination 290 5.4.


4.1 Geminate Recombination 290 5.4.4.2 Nongeminate Recombination 292 5.5 Conclusions 298 Acknowledgments 299 References 299 6 Charge Carrier Transport in Organic Semiconductor Composites -Models and Experimental Techniques 309 Jaros?aw Jung and Jacek Ula ?ski 6.1 Introduction 309 6.2 Basic Concepts 311 6.


2.1 Fermi Energy, Level, and Surface 311 6.2.2 Density of States 312 6.2.3 Covalent Bonds 312 6.2.4 Organic Molecules 313 6.


3 Exciton States 315 6.3.1 Band Structure in Inorganic Crystalline Semiconductors 315 6.3.2 Exciton Band States in Molecular Crystals 317 6.3.3 Exciton States in Organic Amorphous Solids 318 6.3.


4 Diffusion of Excitons in Organic Donor-Acceptor Composites 319 6.4 Charge Carriers in Semiconductors 321 6.4.1 Fermi Level and Pseudo-Fermi Level in Doped Inorganic Semiconductors 321 6.4.2 Conductivity and Mobility of Charge Carriers 322 6.4.3 Holstein Model 323 6.


4.4 Doped Conjugated Polymers 324 6.4.5 Doped Small-Molecule Organic Semiconductors 325 6.4.5.1 Ionized Pairs and Charge Transfer Complexes 326 6.4.


5.2 HOMO and LUMO Level Shift Controlled by Doping 328 6.5 Density of States in Amorphous Organic Semiconductors 330 6.6 Models of Charge Carrier Transport in Organic Semiconductors 333 6.7 Steady-State Currents 335 6.7.1 Drift Current 335 6.7.


2 Space-Charge-Limited Current 338 6.7.3 Transport in Trap-Filled Systems 340 6.7.4 Drift-Diffusion Current 341 6.7.4.1 Nonequilibrium State 341 6.


7.4.2 Drift-diffusion Current in Heterostructures with Nonuniform Composition 343 6.8 Influence of Semiconductor Morphology on Field-Effect Mobility 344 6.9 Drift-diffusion Current in Organic Heterostructure 346 6.10 Selected Experimental Techniques for Investigation of Charge Carriers Transport 349 6.10.1 Steady-state Experiments 349 6.


10.1.1 Space-Charge-Limited Current (SCLC) 349 6.10.1.2 Field Effect 350 6.10.2 Time-domain Experiments 350 6.


10.2.1 Time of Flight (TOF) 350 6.10.2.2 Dark Injection Space-Charge-Limited Current (DISCLC) 351 6.10.2.


3 Transient Electroluminescence Measurements 351 6.10.2.4 Pulse Radiolysis Time-Resolved Microwave Conductivity (PR-TRMC) 351 6.10.2.5 Carrier Extraction by Linearly Increasing Voltage (CELIV) 351 6.10.


3 Alternating Current Experiments 352 6.10.4 Thermoluminescence (TL) and Thermally Stimulated Currents (TSC) 352 6.11 Concluding Remarks 353 References 353 7 Organic Field-Effect Transistors Based on Nanostructured Blends 365 ?ukasz Janasz, Jacek Ula ?ski, andWojciech Pisula 7.1 Introduction 365 7.2 Binary Semiconducting Blends 369 7.2.1 Importance and Principles of Ambipolar Charge Transport in Field-Effect Transistors 369 7.


2.2 Blends of Conjugated Polymers and Small Molecules 372 7.2.2.1 Bulk Heterojunction Structures 372 7.2.2.2 Vertically Separated Bilayer Structures 376 7.


2.3 Blends of Two Conjugated Polymers 378 7.2.4 Blends of Two Small Molecules 385 7.3 Semiconducting Blends of Conjugated Semiconductors and Polymer Insulators in Organic Field-Effect Transistors 391 7.3.1 Concept 391 7.3.


2 Vertically Separated Bilayer Structures 393 7.3.3 Laterally Separated Structures 398 7.3.4 Blends for Bendable and Stretchable Transistors 402 7.4 Summary 405 Acknowledgments 406 References 406 8 Organic Light-emitting Diodes Based on Solution-Processable OrganicMaterials 413 Aikaterini K. Andreopoulou,Maria Gioti, and Joannis K. Kallitsis 8.


1 Introduction 413 8.2 Basic Characteristics and Recent Trends in Organic Light-emitting Diodes 414 8.3 Photoact.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings