Browse Subject Headings
Aircraft Cryogenics
Aircraft Cryogenics
Click to enlarge
Author(s): Ansell, Phil J.
Haran, Kiruba S.
Stautner, Ernst Wolfgang
ISBN No.: 9783031714078
Pages: xvi, 340
Year: 202410
Format: Trade Cloth (Hard Cover)
Price: $ 193.19
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Wolfgang Stautner is the principal cryogenics engineer at the GE HealthCare Technology & Innovation Center. Active both in Industry and Research in cryogenics and superconductivity for over 47 years, he authored 90 peer reviewed publications and over 100 patent applications. He received his M.Sc. in Process Engineering in 1977, starting at Germany's largest research facility (KIT), where he became an expert in cryogenics and superconducting magnet technology and pre-ITER systems. In 1982 he joined Bruker Analytics to design and develop high-end NMR/MRI systems with fields up to 18 Tesla. He then joined OMT (now Siemens Plc) in 1996 to work on novel HTS based and ultra-low cryogen MRI magnets and future cooling methods. As appointed Principal Physicist of the Future Technology Group, he drove the MRI business towards market success.


With GE Research in 2004, his research focused on NextGen MRI scanners with novel superconductors and hyperpolarizing systems while developing the cryogenic infrastructures for large-scale superconducting Offshore-Wind, Marine, Hydro, Aviation and Naval applications. As GE principal investigator on the NASA CHEETA program, he continues to examine cryogenic aircraft components in a green hydrogen based environment. Serving on several international cryogenic boards (CEC-VP until 2023), he unites cryogenics and superconducting technology to shape the future cryogenic engineering landscape. Kiruba Haran is the Grainger Endowed Director's Chair in Electric Machinery and Electromechanics in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He moved to Illinois from GE Research where he worked on electrical machines for applications ranging from power generation to aviation. At Illinois, his work is focused on high specific power machines for electrified transportation and renewable energy. Kiruba obtained his PhD in electric power engineering from RPI in Troy, NY. He is a fellow of the IEEE and a member of the US National Academy of Engineering.


Dr. Phillip J. Ansell is an Associate Professor and Allen Ormsbee Faculty Scholar in the Department of Aerospace Engineering at the University of Illinois, Urbana-Champaign. He is the Director of the Center for Sustainable Aviation (CSA) at Illinois and the Director of the Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA). He is an AIAA Associate Fellow and recently served as the Chair of the AIAA Electrified Aircraft Technology Technical Committee. In recognition for his efforts, he has been granted the AIAA Lawrence Sperry Award, Young Investigator Awards from the Army Research Office and Air Force Office of Scientific Research, and he was previously named on the Forbes 30 Under 30 list in the Science category. Prof. Ansell earned his Ph.


D. (2013) and M.S. (2010) in Aerospace Engineering from the University of Illinois, Urbana-Champaign, and his B.S. (2008) in Aerospace Engineering from Penn State University. Constantinos Minas is a Principal Engineer at GE Aerospace Research. He received his BS degree in Mechanical Engineering from Imperial College, and his MS and PhD from the University at Buffalo.


He is the Program Leader on Hydrogen Aircraft related projects and Principal Investigator on two multimillion dollar Hydrogen programs funded by the Department of Energy (DOE). He has been working in the Hydrogen field for more than 12 years and the fuel cell market more than 20 years. His experience includes the design and dynamic model development and system optimization of a Hydrogen dispenser and a Hydrogen station. He is the author of coauthor of more than 50 publications and 25 US Patents. His interests include Hydrogen production, distribution, hydrogen cryogenics, hydrogen fuel delivery systems, hydrogen safety and hydrogen detection.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings