Browse Subject Headings
RF and Microwave Circuit Design : Theory and Applications
RF and Microwave Circuit Design : Theory and Applications
Click to enlarge
Author(s): Free, Charles
Free, Charles E.
ISBN No.: 9781119114635
Pages: 528
Year: 202109
Format: Trade Cloth (Hard Cover)
Price: $ 142.07
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface 1. RF Transmission lines 1.0 Introduction 1.1 Voltage, current and impedance relationships on a transmission line 1.2 Propagation constant 1.2.1 Dispersion 1.2.


2 Amplitude distortion 1.3 Lossless transmission lines 1.4 Matched and mismatched transmission lines 1.5 Waves on a transmission line 1.6 The Smith chart 1.6.1 Derivation of the chart 1.6.


2 Properties of the chart 1.7 Stubs 1.8 Distributed matching circuits 1.9 Manipulation of lumped impedance using the Smith chart 1.10 Lumped impedance matching 1.10.1 Matching a complex load impedance to a real source impedance 1.10.


2 Matching a complex load impedance to a complex source impedance 1.11 Equivalent lumped circuit of a lossless transmission line 1.12 Supplementary problems 1.13 Appendices Appendix A1.1 Coaxial cable A1.1.1 Electromagnetic field patterns in coaxial cable A1.1.


2 Essential properties of coaxial cables Appendix A1.2 Coplanar waveguide A1.2.1 Structure of coplanar waveguide (CPW) A1.2.2 Electromagnetic field distribution on a CPW line A1.2.3 Essential properties of coplanar (CPW) lines A1.


2.4 Summary of key points relating to CPW lines Appendix A1.3 Metal waveguide A1.3.1 Waveguide principles A1.3.2 Waveguide propagation A1.3.


3 Rectangular waveguide modes A1.3.4 The waveguide equation A1.3.5 Phase and group velocities A1.3.6 Field theory analysis of rectangular waveguides A1.3.


7 Waveguide impedance A1.3.8 Higher-order rectangular waveguide modes A1.3.9 Waveguide attenuation A1.3.10 Sizes of rectangular waveguide, and waveguide designation A1.3.


11 Circular waveguide Appendix A1.4 Microstrip Appendix A1.5 Equivalent lumped circuit representation of a transmission line References 2. Planar Circuit Design I: Designing using Microstrip 2.0 Introduction 2.1 Electromagnetic field distribution across a microstrip line 2.2 Effective relative permittivity, 2.3 Microstrip design graphs and CAD software 2.


4 Operating frequency limitations 2.5 Skin depth 2.6 Examples of microstrip components 2.6.1 Branch-line coupler 2.6.2 Quarter-wave transformer 2.6.


3 Wilkinson power divider 2.7 Microstrip coupled-line structures 2.7.1 Analysis of microstrip coupled lines 2.7.2 Microstrip directional couplers 2.7.2.


1 Design of microstrip directional couplers 2.7.2.2 Directivity of microstrip directional couplers 2.7.2.3 Improvements to microstrip directional couplers 2.7.


3 Examples of other common microstrip coupled-line structures 2.7.3.1 Microstrip DC break 2.7.3.2 Edge-coupled microstrip band-pass filter 2.7.


3.3 Lange coupler 2.8 Summary 2.9 Supplementary problems 2.10 Appendix A2.1: Microstrip design graphs References 3. Fabrication processes for RF and microwave circuits 3.1 Introduction 3.


2 Review of essential materials parameters 3.2.1 Dielectrics 3.2.2 Conductors 3.3 Requirements for RF circuit materials 3.4 Fabrication of planar high-frequency circuits 3.4.


1 Etched circuits 3.4.2 Thick-film circuits (direct screen printed) 3.4.3 Thick-film circuits (using photoimageable materials) 3.4.4 LTCC (low temperature co-fired ceramic) circuits 3.4.


5 Use of ink jet technology 3.5 Characterization of materials for RF and microwave circuits 3.5.1 Measurement of dielectric loss and dielectric constant 3.5.1.1 Cavity resonators 3.5.


1.2 Dielectric characterization by cavity perturbation 3.5.1.3 Use of the split post dielectric resonator (SPDR) 3.5.1.4 Open-resonator 3.


5.1.5 Free-space transmission measurements 3.5.2 Measurement of planar line properties 3.5.2.1 The microstrip resonant ring 3.


5.2.2 Non-resonant lines 3.5.3 Physical properties of microstrip lines 3.6 Supplementary problems references 4. Planar Circuit Design II: Refinements to basic designs 4.1 Introduction 4.


2 Discontinuities in microstrip 4.2.1 Open-end effect 4.2.2 Step width 4.2.3 Corners 4.2.


4 Gaps 4.2.5 T-junctions 4.3 Microstrip enclosures 4.4 Packaged lumped-element passive components 4.4.1 Typical packages for RF passive components 4.4.


2 Lumped-element resistors 4.4.3 Lumped-element capacitors 4.4.4 Lumped-element inductors 4.5 Miniature planar components 4.5.1 Spiral inductors 4.


5.2 Loop inductors 4.5.3 Interdigitated capacitors 4.5.4 MIM (metal-insulator-metal) capacitors 4.6 Appendix 4.1: Insertion loss due to a microstrip gap References 5.


S-parameters 5.1 Introduction 5.2 S-parameter definitions 5.3 Signal flow graphs 5.4 Mason''s non-touching loop rule 5.5 Reflection coefficient of a 2-port network 5.6 Power gains of two-port networks 5.7 Stability 5.


8 Supplementary Problems 5.9 Appendix A5.1 Relationships between network parameters A5.1.1 Transmission parameters (ABCD parameters) A5.1.2 Admittance parameters (Y-parameters) A5.1.


3 Impedance parameters (Z-parameters) References 6. Microwave Ferrites 6.1 Introduction 6.2 Basic properties of ferrite materials 6.2.1 Ferrite materials 6.2.2 Precession in ferrite materials 6.


2.3 Permeability tensor 6.2.4 Faraday rotation 6.3 Ferrites in metallic waveguide 6.3.1 Resonance isolator 6.3.


2 Field displacement isolator 6.3.3 Waveguide circulator 6.4 Ferrites in planar circuits 6.4.1 Planar circulators 6.4.2 Edge-guided-mode propagation 6.


4.3 Edge-guided-mode isolator 6.4.4 Phase shifters 6.5 Self-biased ferrites 6.6 Supplementary problems References 7. Measurements 7.1 Introduction 7.


2 RF and Microwave connectors 7.2.1 Maintenance of connectors 7.2.2 Connecting to planar circuits 7.3 Microwave vector network analyzers 7.3.1 Description and configuration 7.


3.2 Error models representing a VNA 7.3.3 Calibration of a VNA 7.4 On-wafer measurements 7.5 Summary References 8. RF Filters 8.1 Introduction 8.


2 Review of filter responses 8.3 Filter parameters 8.4 Design strategy for RF and microwave filters 8.5 Multi-element low-pass filter 8.6 Practical filter responses 8.7 Butterworth (or maximally-flat) response 8.7.1 Butterworth low-pass filter 8.


7.3 Butterworth band-pass filter 8.7.3 Butterworth band-pass filter 8.8 Chebyshev (equal ripple) response 8.9 Microstrip low-pass filter, using stepped impedances 8.10 Microstrip low-pass filter, using stubs 8.11 Microstrip edge-coupled band-pass filters 8.


12 Microstrip end-coupled band-pass filters 8.13 Practical points associated with filter design 8.14 Summary 8.15 Supplementary problems 8.16 Appendix A8.1 Equivalent lumped T-network representation of a transmission line References 9. Microwave Small-Signal Amplifiers 9.1 Introduction 9.


2 Conditions for matching 9.3 Distributed (microstrip) matching networks 9.4 DC biasing circuits 9.5 Microwave transistor packages 9.6 Typical hybrid amplifier 9.7 DC finger breaks 9.8 Constant gain circles 9.9 Stability circles 9.


10 Noise circles 9.11 Low-noise amplifier design 9.12 Simultaneous conjugate match 9.13 Broadband matching 9.14 Summary 9.15 Supplementary problems References 10. Switches and Phase Shifters 10.1 Introduction 10.


2 Switches 10.2.1 PIN diodes 10.2.2 FETs (Field Effect Transistors) 10.2.3 MEMS (Microelectromechanical Systems) 10.2.


4 IPCS (Inline Phase Change Switch) devices 10.3 Digital phase shifters 10.3.1 Switched-path phase shifter 10.3.2 Loaded-line phase shifter 10.3.3 Reflection-type phase shifter 10.


3.4 Schiffman 90? phase shifter 10.3.5 Single switch phase shifter 10.4 Supplementary problems References 11. Oscillators 11.1 Introduction 11.2 Criteria for oscillation in a feedback circuit 11.


3 RF (transistor) oscillators 11.3.1 Colpitts oscillator 11.3.2 Hartley Oscillator 11.3.3 Clapp-Gouriet Oscillator 11.4 Voltage controlled oscillator (VCO) 11.


5 Crystal-controlled oscillators 11.5.1 Crystals 11.5.2 Crystal-controlled oscillators 11.6 Frequency synthesizers 11.6.1 The phase-locked loop 11.


6.1.1 Principle of a phase-locked loop 11.6.1.2 Main components of a phase-locked loop 11.6.1.


3 Gain of a phase-locked loop 11.6.1.4 Transient analysis of a phase-locked loop 11.6.2 Indirect frequency synthesizer circuits.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings