Preface xv 1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1 Jitendra K. Katiyar and Vinay Kumar Patel 1.1 Introduction 2 1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3 1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14 1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19 1.5 Conclusions 27 References 28 2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33 Mariana D. Banea 2.
1 Introduction 33 2.2 Design of Structures with Debondable Adhesives 34 2.3 Methodologies for Adhesive Debonding on Demand 35 2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35 2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36 2.
3.1.2 Supramolecular Polymers 36 2.3.2 Electrically Induced Debonding of Adhesive Joints 37 2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38 2.3.
3.1 Nanoparticles 38 2.3.3.2 Microparticles 40 2.4 Summary 44 Acknowledgements 45 References 45 3 Chitosan-Catechol Conjugates-A Novel Class of Bioadhesive Polymers: A Critical Review 51 Loveleen Kaur and Inderbir Singh 3.1 Introduction 51 3.1.
1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52 3.1.2 Chitosan and Its Associated Problems 53 3.2 Preparation Methods for Chitosan-Catechol Conjugates 54 3.3 Characterization 55 3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55 3.3.
2 Nuclear Magnetic Resonance (NMR) 56 3.3.3 Scanning Electron Microscopy (SEM) 57 3.3.4 Differential Scanning Calorimetry (DSC) 57 3.3.5 X-ray Diffraction (XRD) 57 3.4 Properties of Chitosan-Catechol Conjugates 57 3.
4.1 Stability 57 3.4.2 Permeation 58 3.4.3 Mucoadhesion 58 3.4.4 Solubility 59 3.
4.5 Antibacterial Property 59 3.4.6 Mechanical Strength 60 3.4.7 Biocompatibility 60 3.4.8 Bioink for 3D Printing 60 3.
5 Applications of Chitosan-Catechol Conjugates 61 3.5.1 Nanoparticles 61 3.5.2 Hydrogels 62 3.5.3 Microspheres 62 3.5.
4 Sponges 64 3.5.5 Films 64 3.6 Patent Updates 64 3.7 Summary and Future Aspects 64 Acknowledgement 65 Conflict of Interest 65 References 65 4 Adhesives in the Footwear Industry: A Critical Review 69 Elena Orgilés-Calpena, Francisca Arán-Aís, Ana M. Torró-Palau and Miguel Angel Martínez Sánchez 4.1 Introduction 69 4.2 The Footwear Industry 70 4.
2.1 Substrates and Adhesives 70 4.2.2 Surface Treatments 73 4.2.3 Adhesives Requirements 77 4.2.4 Bonding Stages in Footwear Manufacturing Process 78 4.
2.5 Debonding Real Cases in Footwear 81 4.3 Sustainable Adhesives for the Footwear Industry 82 4.3.1 Water-Based Adhesives 82 4.3.2 Hot-Melt Adhesives 84 4.4 Future Trends in Footwer Adhesives 86 4.
5 Summary 88 Acknowledgements 88 References 89 5 Nanocomposite Polymer Adhesives: A Critical Review 93 S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid 5.1 Introduction 93 5.2 Nanostructuring of Adhesives - Methodology 94 5.3 Nanoparticles Types - Basic Compositions and Properties 95 5.
3.1 Nanoclays 95 5.3.2 Nanosilica (NS) 96 5.3.3 POSS - Polyhedral Oligomeric Silsesquioxanes 97 5.3.4 Carbon Nanotubes (CNTs) 97 5.
3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99 5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101 5.4 Adhesives Types - Basic Compositions and Properties 102 5.4.1 Epoxies 102 5.4.
2 Polyurethanes (PUs) 102 5.4.3 Polyimides (PIs) 103 5.4.4 Silicones 103 5.4.5 Acrylics 104 5.5 Nanocomposite Adhesives-Composition-Properties Relationships, Reinforcement and Toughening Mechanisms 104 5.
5.1 Introduction 104 5.5.2 Epoxy/Nanoclay Composite Adhesives 105 5.5.2.1 Bulk Properties 105 5.5.
2.2 Adhesive Properties 107 5.5.3 Epoxy/Silica Nanocomposite Adhesives 108 5.5.3.1 Bulk Properties 108 5.5.
3.2 Adhesive Properties 110 5.5.4 Epoxy/CNT Nanocomposite Adhesives 110 5.5.4.1 Bulk Properties 110 5.5.
4.2 Adhesive Properties 113 5.5.5 Epoxy/POSS Nanocomposite Adhesives 115 5.5.5.1 Bulk Properties 115 5.5.
5.2 Adhesive Properties 118 5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118 5.5.6.1 Bulk Properties 119 5.5.
6.2 Adhesive Properties 122 5.5.7 Epoxy/WS2 Nanocomposite Adhesives 125 5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126 5.5.8.
1 Bulk Properties 126 5.5.8.2 Adhesive Properties 127 5.5.9 PU/WS2 Nanocomposite Adhesives 128 5.5.10 Polyimide/NCs Nanocomposite Adhesives 128 5.
5.10.1 Bulk properties 128 5.5.10.2 Adhesive Properties 129 5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129 5.
5.11.1 Bulk Properties 129 5.5.11.2 Adhesive Properties 132 5.5.12 PU/NCs Nanocomposite Adhesives 132 5.
5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132 5.5.13.1 Bulk Properties 132 5.5.13.2 Adhesive Properties 133 5.
5.14 PU/WS2 Nanocomposite Adhesives 134 5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135 5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136 5.5.17 Acrylic/NCs Nanocomposite Adhesives 136 5.
5.18 Acrylic/POSS Nanocomposite Adhesives 136 5.5.19 Silicone/WS2 Nanocomposite Adhesives 137 5.6 Fracture and Toughening Mechanisms 137 5.6.1 Fracture Surfaces 138 5.6.
2 Toughening Micro and Nanomechanisms 138 5.7 Nanocomposite Adhesives - Applications, Challenges and Opportunities 143 5.7.1 Applications of Nanocomposite Adhesives 146 5.7.1.1 Electronics and Nanoelectronics 146 5.7.
1.2 Aerospace 146 5.7.1.3 Biomedical 147 5.8 Summary 148 References 148 6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169 Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani 6.1 Introduction 169 6.1.
1 Ion-Solid Interactions 170 6.1.2 Computer Simulations of Ion Beam - Solid Interactions 171 6.2 Ion Beam Treatment of Polymers 172 6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172 6.3.1 X-ray Diffraction 173 6.3.
2 Scanning Electron Microscopy 173 6.3.3 Fourier Transform Infrared Spectroscopy 174 6.3.4 Raman Spectroscopy 174 6.3.5 UV Spectroscopy 175 6.3.
6 X-ray Photoelectron Spectroscopy (XPS) 175 6.3.7 Wettability Measurements 176 6.3.8 Atomic Force Microscopy (AFM) 177 6.4 Biomedical Applications 178 6.4.1 Poly(lactic acid) (PLA) 178 6.
4.2 Poly(L-lactic acid) (PLLA) 180 6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180 6.5 Microelectronics Applications 182 6.5.1 Bisphenol A polycarbonate (PC) 182 6.5.
2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184 6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185 6.5.4 Polyimide Films 187 6.5.5 Cu/Polyimide Films 187 6.5.
6 Multiple Ion Beam Treatment of Polymers 188 6.6 Summary 190 References 190 7 Non-Wettable Surfaces - From Natural to Artificial and Applications: A Critical Review 195 Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo 7.1 Introduction 195 7.2 The Basic Wetting Models 198 7.3 Non-Wettable Surfaces 200 7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200 7.3.
2 Artificial Non-Wettable Surfaces 206 7.3.3 Preparation of Non-Wettable Surfaces 208 7.3.4 Properties of Non-Wettable Surfaces 214 7.4 Applications of Non-Wettable Surfaces and Challenges 217 7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217 7.
4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218 7.4.3 Non-Wettable Surfaces for Biomedical Applications 219 7.5 Summary and Future Prospects 220 Acknowledgements 220 References 221 8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO2 in the Gas Phase: A Critical Review 233 J. Friedrich, M. Jab?o?ska and G. Hidde 8.
1 Introduction 234 8.2 Chemistry of Polyolefin Oxidation 235 8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235 8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236 8.2.3 Decarboxylation and Emission of CO2 237 8.
2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238 8.3 Processes at Polyolefin Surfaces 239 8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239 8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240 8.3.
3 Formation and Characterization of LMWOM 243 8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243 8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245