Preface xiii Part I Introduction 1 1 Introduction and Overview 3 Hang Z. Yu, Nihan Tuncer, and Zhili Feng 1.1 Overview and History of Metal Additive Manufacturing 4 1.2 Liquid-State Bonding Versus Solid-State Bonding 7 1.2.1 Liquid-State Bonding 7 1.2.2 Solid-State Bonding 8 1.
3 Nonbeam-Based, Solid-State Metal Additive Manufacturing 9 1.3.1 Deformation-Based Metal Additive Manufacturing 9 1.3.2 Sintering-Based Metal Additive Manufacturing 11 1.4 Additive Manufacturing Categorization Based on the Relationship Between Shape Forming and Consolidation 12 1.5 Organization of the Book 14 References 15 Part II Cold Spray Additive Manufacturing 19 2 Impact-Induced Bonding: Physical Processes and Bonding Mechanisms 21 David Veysset and Mostafa Hassani 2.1 Introduction 21 2.
2 Fundamentals of Impact Bonding 23 2.2.1 Plate Impacts and Explosive Welding 23 2.2.1.1 The Shock Equations of State 23 2.2.1.
2 Limiting Conditions for Explosive Welding 24 2.2.2 Laser Impact Bonding 30 2.3 Bonding Mechanisms in Cold Spray 32 2.3.1 Proposed Mechanisms 32 2.3.1.
1 The Role of Jetting and Impact Pressure in Particle Bonding 32 2.3.1.2 The Limiting Case of Impact Melting 33 2.3.1.3 Adiabatic Shear Instability 36 2.3.
1.4 Dissimilar Materials Impact 40 2.3.2 Influence of Particle Characteristics 41 2.3.2.1 Particle Temperature 41 2.3.
2.2 Particle Size 42 2.3.2.3 Surface Oxide and Hydroxide Effects 42 References 43 3 Microstructures and Microstructural Evolution in Cold-Sprayed Materials 49 Luke N. Brewer and Lorena I. Perez-Andrade 3.1 Introduction 49 3.
2 Defect Structures 50 3.2.1 Vacancies 51 3.2.2 Dislocation Structure 52 3.2.3 Grain Structure 55 3.2.
4 Precipitate Structure 56 3.2.5 Porosity 60 3.3 Microstructural Evolution of Thermally Treated Cold-Sprayed Materials 61 3.3.1 Recovery, Recrystallization, and Grain Growth 62 3.3.2 Precipitation 65 3.
3.3 Heat Treatment of Feedstock Powders and its Impact on Microstructure 66 3.4 Conclusions 67 Acknowledgements 67 References 68 4 Mechanical Properties of Cold Spray Deposits 75 Sara Bagherifard and Mario Guagliano 4.1 Introduction 75 4.2 Mechanical Properties 76 4.2.1 Adhesive Strength 77 4.2.
1.1 Adhesive Strength Test Methods 77 4.2.1.2 The Effect of Process Parameters on Adhesive Strength 80 4.2.1.3 The effect of Pre-/Post-treatments on Adhesive Strength 80 4.
2.2 Cohesive Strength 83 4.2.2.1 Cohesive Strength Test methods 84 4.2.2.2 Cohesive Strength Under Static Loading 84 4.
2.2.3 Cohesive Strength Under Fatigue Loading 86 4.2.2.4 Anisotropy in Cohesive Strength 90 4.2.3 Summary and Future Perspectives 91 References 94 5 Cold Spray in Practical and Potential Applications 101 Jingjie Wei, Yong He, Phuong Vo, and Yu Zou 5.
1 Introduction 101 5.1.1 The Cold Spray Process 101 5.1.2 Cold Spray Additive Manufacturing (CSAM) 103 5.2 Materials 103 5.2.1 Cu and Cu Alloys 103 5.
2.1.1 2Cu-Ga and Cu-In-Ga 107 5.2.1.2 Cu-Sn 107 5.2.1.
3 Cu-W 107 5.2.2 Al and Al Alloys 108 5.2.3 Ni and Ni Alloys 110 5.2.4 Stainless Steels 111 5.2.
5 Body Center Cubic (BCC) Metals 112 5.2.5.1 Tantalum 112 5.2.5.2 Niobium 114 5.2.
6 Hexagonal Close-Packed (HCP) Metals 114 5.2.6.1 Titanium 114 5.2.6.2 Magnesium 116 5.2.
7 Metal Mixes and Metal Matrix Composite (MMC) 116 5.2.7.1 Metal Mixes 117 5.2.7.2 Metal Matrix Composite 117 5.2.
8 Multicomponent and High Entropy Alloys 120 5.2.8.1 MCrAlY Multicomponent Alloy 120 5.2.8.2 High Entropy Alloy (HEA) 120 5.2.
9 Multimaterials 121 5.3 Perspective and Challenges 122 References 124 Part III Additive Friction Stir Deposition 133 6 Process Fundamentals of Additive Friction Stir Deposition 135 David Garcia and Hang Z. Yu 6.1 Additive Friction Stir Deposition - Macroscopic Process Overview 136 6.2 Thermo-Mechanical Processing Evolution 139 6.3 Heat Generation and Heat Transfer 142 6.3.1 Heat Generation and Heat Transfer Mechanisms 142 6.
3.2 Peak Temperature and Material Dependence 143 6.4 Material Flow and Deformation 146 References 149 7 Dynamic Microstructure Evolution in Additive Friction Stir Deposition 153 Robert J. Griffiths and Hunter A. Rauch 7.1 Introduction to Microstructure Evolution in Additive Friction Stir Deposition 154 7.2 Dynamic Microstructure Evolution in Single-Phase Materials 155 7.2.
1 Stacking Fault Energy and Dislocation Mobility 155 7.2.2 Dynamic Recovery 157 7.2.3 Continuous Dynamic Recrystallization 157 7.2.4 Discontinuous Dynamic Recrystallization 159 7.2.
5 Static and Post-Dynamic Recrystallization 160 7.2.6 Heterogeneous Deposits and Metadynamic Recrystallization 161 7.3 Dynamic Microstructure Evolution in Multiple-Phase Materials 162 7.3.1 Thermal Evolution During Additive Friction Stir Deposition 162 7.3.2 Evolution of Secondary Phases at Low Temperature 164 7.
3.3 Evolution of Secondary Phases at High Temperature 166 7.3.4 Evolution of Secondary Phases After Deformation 168 7.3.5 Mapping Secondary Phase Evolution to Processing Space 168 7.4 Effects of Material Transport on Microstructure Evolution 170 7.4.
1 Mechanisms of Material Transport 170 7.4.2 Material Transport for the Homogenization of Mixtures 172 7.4.3 Densification of Material Through Material Transport 173 7.4.4 Material Transport and Spatial Variance in Thermomechanical Conditions 174 7.5 The Study of Microstructure Evolution in Additive Friction Stir Deposition 175 7.
5.1 Contemporary Approaches 175 7.5.2 Novel Approaches 177 Acknowledgement 177 References 177 8 Mechanical Properties of Additive Friction Stir Deposits 181 Dustin Avery and Mackenzie Perry 8.1 Introduction 181 8.2 Magnesium-Based Alloys 184 8.2.1 WE43 184 8.
2.2 AZ31 187 8.3 Aluminum-Based Alloys 189 8.3.1 5xxx 190 8.3.2 2xxx 192 8.3.
3 6xxx 193 8.3.4 7xxx 195 8.3.5 Cast Al Alloys 197 8.4 Other Alloys Systems 197 8.4.1 Nickel-Based Alloys 197 8.
4.2 Copper-Based Alloys 198 8.4.3 Titanium-Based Alloys 198 8.4.4 Steel Alloys 199 8.4.5 High-Entropy Alloys 199 8.
4.6 Metal Matrix Composites 200 8.5 Repair 200 8.6 Summary and Future Perspectives 201 8.6.1 Anisotropy 201 8.6.2 Graphite Lubricant 202 8.
6.3 Multimaterial or Designed Feedstock 202 8.6.4 Effect of Process Parameters on Mechanical Properties 202 8.6.5 Active Cooling/Heating 202 8.6.6 Heat Treatment 202 8.
6.7 High-Temperature Materials - Tool Wear 203 8.6.8 Unique Possibilities 203 8.6.9 Modeling 203 References 203 9 Potential Industrial Applications of Additive Friction Stir Deposition 209 Hang Z. Yu, Rajiv S. Mishra, Chase D.
Cox, and Zhili Feng 9.1 Large-Scale Metal Additive Manufacturing 209 9.2 Selective Area Cladding 211 9.3 Recycling and Upcycling 214 9.4 Structural Repair 220 9.5 Underwater Deposition 224 Acknowledgment 227 References 227 Part IV Ultrasonic Additive Manufacturing 231 10 Process Fundamentals of Ultrasonic Additive Manufacturing 233 Austin Ward 10.1 Process Overview 233 10.1.
1 Process Parameters 234 10.2 Temperature Rise and Thermal Modeling 235 10.2.1 Heat Generation During Welding 235 10.2.2 Sonotrode Contact Stress 237 10.2.3 Coefficient of Friction 238 10.
2.4 Temperature Profile 239 10.3 Feedstock Bonding Mechanisms 241 10.3.1 Oxide Breakdown 241 10.3.2 Asperity Deformation 243 10.3.
3 Diffusional Bonding Processes 246 10.3.4 Liquid-Phase Bonding 247 10.4 Dissimilar Metal Consolidation 247 10.4.1 Mechanical and Thermal Modeling 247 10.4.2 Dissimilar Metal Junction Growth 248 10.
4.3 Interdiffusion 249 10.5 Acoustic Softening and Strain Normality 251 10.5.1 Cyclic Strain Ratcheting 253 10.6 Summary 254 Acknowledgments 255 References 255 11 Ultrasonic Additive Manufacturing: Microstructural and Mechanical Characterization 259 Tianyang (Tyler) Han, Leon M. Headings, and Marcelo J. Dapino 11.
1 Introduction 259 11.2 Microstructure Analysis of UAM Builds 259 11.2.1 Similar Material Joining with UAM 260 11.2.2 Dissimilar Material Joining with UAM 262 11.2.2.
1 Al-Ceramic Weld 262 11.2.2.2 Ni-Steel Weld 263 11.3 Hardness Analysis of UAM Builds 266 11.4 Mechanical Characterization of UAM Builds 267 11.4.1 Design of a Custom Shear Testing Method 268 11.
4.2 Validation of the Shear Test 268 11.4.3 Finite element Modeling of the Shear Test 270 11.4.4 Application of the Shear Test to UAM Samples 273 11.5 Conclusions 275 References 275 12 Industrial Applications of Ultrasonic Additive Manufacturing 279 Mark Norfolk 12.1 Early Years 279 12.
2 Increased Power â Increased Capability 281 12.3 Modern Applications 282.