1 What''s Going On: Looking at the Quantum World Albert Einstein, who had a way with words as well as with equations, was the one who stuck quantum mechanics with the label it has been unable to shake ever since: spukhafte, usually translated from German to English as "spooky." If nothing else, that''s the impression we get from most public discussions of quantum mechanics. We''re told that it''s a part of physics that is unavoidably mystifying, weird, bizarre, unknowable, strange, baffling. Spooky. Inscrutability can be alluring. Like a mysterious, sexy stranger, quantum mechanics tempts us into projecting all sorts of qualities and capacities onto it, whether they are there or not. A brief search for books with "quantum" in the title reveals the following list of purported applications: Quantum Success Quantum Leadership Quantum Consciousness Quantum Touch Quantum Yoga Quantum Eating Quantum Psychology Quantum Mind Quantum Glory Quantum Forgiveness Quantum Theology Quantum Happiness Quantum Poetry Quantum Teaching Quantum Faith Quantum Love For a branch of physics that is often described as only being relevant to microscopic processes involving subatomic particles, that''s a pretty impressive rZsumZ. To be fair, quantum mechanics-or "quantum physics," or "quantum theory," the labels are all interchangeable-is not only relevant to microscopic processes.
It describes the whole world, from you and me to stars and galaxies, from the centers of black holes to the beginning of the universe. But it is only when we look at the world in extreme close-up that the apparent weirdness of quantum phenomena becomes unavoidable. One of the themes in this book is that quantum mechanics doesn''t deserve the connotations of spookiness, in the sense of some ineffable mystery that it is beyond the human mind to comprehend. Quantum mechanics is amazing; it is novel, profound, mind-stretching, and a very different view of reality from what we''re used to. Science is like that sometimes. But if the subject seems difficult or puzzling, the scientific response is to solve the puzzle, not to pretend it''s not there. There''s every reason to think we can do that for quantum mechanics just like any other physical theory. Many presentations of quantum mechanics follow a typical pattern.
First, they point to some counterintuitive quantum phenomenon. Next, they express bafflement that the world can possibly be that way, and despair of it making sense. Finally (if you''re lucky), they attempt some sort of explanation. Our theme is prizing clarity over mystery, so I don''t want to adopt that strategy. I want to present quantum mechanics in a way that will make it maximally understandable right from the start. It will still seem strange, but that''s the nature of the beast. What it won''t seem, hopefully, is inexplicable or unintelligible. We will make no effort to follow historical order.
In this chapter we''ll look at the basic experimental facts that force quantum mechanics upon us, and in the next we''ll quickly sketch the Many-Worlds approach to making sense of those observations. Only in the chapter after that will we offer a semi-historical account of the discoveries that led people to contemplate such a dramatically new kind of physics in the first place. Then we''ll hammer home exactly how dramatic some of the implications of quantum mechanics really are. With all that in place, over the rest of the book we can set about the fun task of seeing where all this leads, demystifying the most striking features of quantum reality. ¡¡¡ Physics is one of the most basic sciences, indeed one of the most basic human endeavors. We look around the world, we see it is full of stuff. What is that stuff, and how does it behave? These are questions that have been asked ever since people started asking questions. In ancient Greece, physics was thought of as the general study of change and motion, of both living and nonliving matter.
Aristotle spoke a vocabulary of tendencies, purposes, and causes. How an entity moves and changes can be explained by reference to its inner nature and to external powers acting upon it. Typical objects, for example, might by nature be at rest; in order for them to move, it is necessary that something be causing that motion. All of this changed thanks to a clever chap named Isaac Newton. In 1687 he published Principia Mathematica, the most important work in the history of physics. It was there that he laid the groundwork for what we now call "classical" or simply "Newtonian" mechanics. Newton blew away any dusty talk of natures and purposes, revealing what lay underneath: a crisp, rigorous mathematical formalism with which teachers continue to torment students to this very day. Whatever memory you may have of high-school or college homework assignments dealing with pendulums and inclined planes, the basic ideas of classical mechanics are pretty simple.
Consider an object such as a rock. Ignore everything about the rock that a geologist might consider interesting, such as its color and composition. Put aside the possibility that the basic structure of the rock might change, for example, if you smashed it to pieces with a hammer. Reduce your mental image of the rock down to its most abstract form: the rock is an object, and that object has a location in space, and that location changes with time. Classical mechanics tells us precisely how the position of the rock changes with time. We''re very used to that by now, so it''s worth reflecting on how impressive this is. Newton doesn''t hand us some vague platitudes about the general tendency of rocks to move more or less in this or that fashion. He gives us exact, unbreakable rules for how everything in the universe moves in response to everything else-rules that can be used to catch baseballs or land rovers on Mars.
Here''s how it works. At any one moment, the rock will have a position and also a velocity, a rate at which it''s moving. According to Newton, if no forces act on the rock, it will continue to move in a straight line at constant velocity, for all time. (Already this is a major departure from Aristotle, who would have told you that objects need to be constantly pushed if they are to be kept in motion.) If a force does act on the rock, it will cause acceleration-some change in the velocity of the rock, which might make it go faster, or slower, or merely alter its direction-in direct proportion to how much force is applied. That''s basically it. To figure out the entire trajectory of the rock, you need to tell me its position, its velocity, and what forces are acting on it. Newton''s equations tell you the rest.
Forces might include the force of gravity, or the force of your hand if you pick up the rock and throw it, or the force from the ground when the rock comes to land. The idea works just as well for billiard balls or rocket ships or planets. The project of physics, within this classical paradigm, consists essentially of figuring out what makes up the stuff of the universe (rocks and so forth) and what forces act on them. Classical physics provides a straightforward picture of the world, but a number of crucial moves were made along the way to setting it up. Notice that we had to be very specific about what information we required to figure out what would happen to the rock: its position, its velocity, and the forces acting on it. We can think of those forces as being part of the outside world, and the important information about the rock itself as consisting of just its position and velocity. The acceleration of the rock at any moment in time, by contrast, is not something we need to specify; that''s exactly what Newton''s laws allow us to calculate from the position and the velocity. Together, the position and velocity make up the state of any object in classical mechanics.
If we have a system with multiple moving parts, the classical state of that entire system is just a list of the states of each of the individual parts. The air in a normal-sized room will have perhaps 10 molecules of different types, and the state of that air would be a list of the position and velocity of every one of them. (Strictly speaking physicists like to use the momentum of each particle, rather than its velocity, but as far as Newtonian mechanics is concerned the momentum is simply the particle''s mass times its velocity.) The set of all possible states that a system could have is known as the phase space of the system. The French mathematician Pierre-Simon Laplace pointed out a profound implication of the classical-mechanics way of thinking. In principle, a vast intellect could know the state of literally every object in the universe, from which it could deduce everything that would happen in the future, as well as everything that had happened in the past. Laplace''s demon is a thought experiment, not a realistic project for an ambitious computer scientist, but the implications of the thought experiment are profound. Newtonian mechanics describes a deterministic, clockwork universe.
The machinery of classical physics is so beautiful and compelling that it seems.