Preface Acknowledgements Chapter 1. Introduction to Atomic Force Microscopy 1.0 - Key Objectives 1.1 - Scanning Probe Microscope Overview 1.2 - AFM Description 1.2.1 - AFM Components 1.3 - Basic AFM Operation 1.
3.1 - AFM Modes 1.3.2 - Feedback Electronics 1.3.3 - Laser Beam Detection 1.4 - Forces in AFM 1.5 - AFM Applications 1.
6 - AFM Lithography 1.6.1 - Nanoshaving 1.6.2 - Nanografting 1.6.3 - Dip-Pen Nanolithography (DPN) 1.7 - End-of-Chapter Questions 1.
8 - References Chapter 2. Tip - Sample Forces 2.0 - Key Objectives 2.1 - Introduction 2.2 - Van der Waals Forces 2.3 - Repulsive Forces 2.4 - Capillary Forces 2.5 - Force Curves 2.
5.1 - Force Spectroscopy 2.6 - Laboratory Exercise: Force Curve Analysis of Metallized Polymer Patterns 2.6.1 - Laboratory Objectives 2.6.2 - Materials and Procedures 2.6.
3 - Sample Data and Results 2.7 - Post-Lab Questions 2.8 - End-of-Chapter Questions 2.9 - References Chapter 3. - AFM Electronics 3.0 - Key Objectives 3.1 - Analog and Digital Electronics 3.2 - AFM Components 3.
2.1 - Photodiode 3.2.2 - Scanner 3.2.2.1 - Scanner Materials 3.2.
2.2 - Piezotube Geometry 3.2.2.3 - Scanner Nonlinearities 3.2.3 - Motors 3.3 - Feedback Loop 3.
3.1 - Proportional and Integral Gains 3.4 - AFM Parameters 3.5 - End-of-Chapter Questions 3.6 - References Chapter 4. - AFM Cantilevers and Probes 4.0 - Key Objectives 4.1 - Probe Characteristics 4.
2 - Tip Geometry 4.3 - Cantilever Characteristics 4.4 - Mechanical Properties of Cantilevers 4.4.1 - Spring Constants 4.4.2 - Resonance Frequency of Cantilever 4.5 - Probe Fabrication 4.
6 - End-of-Chapter Questions 4.7 - References Chapter 5. Contact Mode AFM 5.0 - Key Objectives 5.1 - Contact Mode Characteristics 5.1.1 - Contact Mode Applications 5.2 - Probe Behavior in Contact Mode 5.
3 - Feedback Loop Operation in Contact Mode 5.3.1 - Setpoint 5.3.2 - Deflection 5.3.3 - Feedback Loop Signals 5.4 - Surface Roughness 5.
4.1 - Average Roughness 5.4.2 - RMS Roughness 5.4.3 - Additional Roughness Parameters 5.5 - Laboratory Exercise: Surface Roughness Analysis of Metallized Polymer Patterns 5.5.
1 - Laboratory Objectives 5.5.2 - Materials and Procedures 5.5.3 - Sample Data 5.6 - Post-Lab Question 5.7 - End-of-Chapter Questions 5.8 - References Chapter 6.
Lateral Force Microscopy 6.0 - Key Objectives 6.1 - Introduction 6.2 - Lateral Force Microscope Probe Behavior 6.3 - Lateral Force Microscopy Data 6.3.1 - Photodiode Response in Lateral Force Microscopy 6.3.
2 - Friction Loop 6.4 - Laboratory Exercise: Analysis of Nanoshaved Patterns Etched in Polymer Films 6.4.1 - Laboratory Objectives 6.4.2 - Materials and Procedures 6.4.3 - Sample Data and Results 6.
5 - Post-Lab Questions 6.6 - End-of-Chapter Questions 6.7 - References Chapter 7. Conductive Atomic Force Microscopy 7.0 - Key Objectives 7.1 - CAFM Overview 7.2 - CAFM Electronics 7.3 - CAFM Probe Characteristics 7.
4 - Nanoscale Impedance Microscopy 7.4.1 - Nanoscale Impedance Microscopy Data 7.5 - Laboratory Exercise: CAFM Analysis of Silver Nanowires 7.5.1 - Laboratory Objectives 7.5.2 - Materials and Procedures 7.
5.3 - Sample Data 7.6 - Post-Lab Questions 7.7 - End-of-Chapter Questions 7.8 - References Chapter 8. Oscillating Modes of AFM 8.0 - Key Objectives 8.1 - Tapping Mode 8.
1.1 - Tapping Mode Operation 8.1.2 - Mechanical Properties of Tapping Mode Tips 8.1.3 - Tapping Mode Forces 8.1.4 - Tapping Mode Parameters 8.
1.5 - Q -Factor 8.1.6 - Feedback Loop Operation in Oscillating Modes 8.1.7 - Lock-in Amplifier 8.2 - Non-contact Mode 8.2.
1 - Non-contact Mode Forces 8.3 - Phase Imaging 8.4 - Laboratory Exercise: Phase Imaging of Metal/Polymer Nanostructures 8.4.1 - Laboratory Objectives 8.4.2 - Materials and Procedures 8.4.
3 - Sample Data and Results 8.5 - Post-Lab Questions 8.6 - End-of-Chapter Questions 8.7 - References Chapter 9. Image Processing 9.0 - Key Objectives 9.1 - Introduction 9.2 - Levelling 9.
2.1 - Polynomial Fitting 9.3 - Histogram Adjust 9.4 - Filtering 9.4.1 - External Vibrations 9.4.2 - Fast Fourier Transform 9.
5 - Line Profiles 9.6 - End-of-Chapter Questions 9.7 - References.