Preface xix About the Companion Website xxiii 1 Time-Varying and Time-Harmonic Electromagnetic Fields 1 1.1 Introduction 1 1.2 Maxwell''s Equations 2 1.3 Constitutive Parameters and Relations 5 1.4 Circuit-Field Relations 7 1.5 Boundary Conditions 12 1.6 Power and Energy 18 1.7 Time-Harmonic Electromagnetic Fields 21 1.
8 Multimedia 29 References 29 Problems 30 2 Electrical Properties of Matter 41 2.1 Introduction 41 2.2 Dielectrics, Polarization, and Permittivity 43 2.3 Magnetics, Magnetization, and Permeability 50 2.4 Current, Conductors, and Conductivity 57 2.5 Semiconductors 61 2.6 Superconductors 66 2.7 Metamaterials 68 2.
8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69 2.9 A.C. Variations in Materials 70 2.10 Multimedia 92 References 92 Problems 93 3 Wave Equation and Its Solutions 103 3.1 Introduction 103 3.2 Time-Varying Electromagnetic Fields 103 3.3 Time-Harmonic Electromagnetic Fields 105 3.
4 Solution to the Wave Equation 106 3.5 Multimedia 125 References 125 Problems 125 4 Wave Propagation and Polarization 127 4.1 Introduction 127 4.2 Transverse Electromagnetic Modes 127 4.3 Transverse Electromagnetic Modes in Lossy Media 142 4.4 Polarization 151 4.5 Multimedia 171 References 171 Problems 172 5 Reflection and Transmission 179 5.1 Introduction 179 5.
2 Normal Incidence--Lossless Media 179 5.3 Oblique Incidence--Lossless Media 183 5.4 Lossy Media 204 5.5 Reflection and Transmission of Multiple Interfaces 212 5.6 Polarization Characteristics on Reflection 228 5.7 Metamaterials 235 5.8 Multimedia 253 References 254 Problems 256 6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271 6.1 Introduction 271 6.
2 The Vector Potential A 272 6.3 The Vector Potential F 274 6.4 The Vector Potentials A and F 275 6.5 Construction of Solutions 277 6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291 6.7 Far-Field Radiation 295 6.8 Radiation and Scattering Equations 296 6.9 Multimedia 317 References 317 Problems 318 7 Electromagnetic Theorems and Principles 323 7.
1 Introduction 323 7.2 Duality Theorem 323 7.3 Uniqueness Theorem 325 7.4 Image Theory 327 7.5 Reciprocity Theorem 335 7.6 Reaction Theorem 337 7.7 Volume Equivalence Theorem 338 7.8 Surface Equivalence Theorem: Huygens'' Principle 340 7.
9 Induction Theorem (Induction Equivalent) 345 7.10 Physical Equivalent and Physical Optics Equivalent 349 7.11 Induction and Physical Equivalent Approximations 351 7.12 Multimedia 356 References 356 Problems 357 8 Rectangular Cross-Section Waveguides and Cavities 365 8.1 Introduction 365 8.2 Rectangular Waveguide 366 8.3 Rectangular Resonant Cavities 396 8.4 Hybrid (LSE and LSM) Modes 404 8.
5 Partially Filled Waveguide 407 8.6 Transverse Resonance Method 419 8.7 Dielectric Waveguide 422 8.8 Stripline and Microstrip Lines 450 8.9 Ridged Waveguide 461 8.10 Multimedia 464 References 467 Problems 468 9 Circular Cross-Section Waveguides and Cavities 479 9.1 Introduction 479 9.2 Circular Waveguide 479 9.
3 Circular Cavity 496 9.4 Radial Waveguides 505 9.5 Dielectric Waveguides and Resonators 512 9.6 Multimedia 537 References 537 Problems 539 10 Spherical Transmission Lines and Cavities 547 10.1 Introduction 547 10.2 Construction of Solutions 547 10.3 Biconical Transmission Line 555 10.4 The Spherical Cavity 559 10.
5 Multimedia 567 References 567 Problems 567 11 Scattering 573 11.1 Introduction 573 11.2 Infinite Line-Source Cylindrical Wave Radiation 574 11.3 Plane Wave Scattering by Planar Surfaces 581 11.4 Cylindrical Wave Transformations and Theorems 597 11.5 Scattering by Circular Cylinders 605 11.6 Scattering By a Conducting Wedge 637 11.7 Spherical Wave Orthogonalities, Transformations, and Theorems 648 11.
8 Scattering by a Sphere 653 11.9 Multimedia 663 References 664 Problems 666 12 Integral Equations and the Moment Method 677 12.1 Introduction 677 12.2 Integral Equation Method 678 12.3 Electric and Magnetic Field Integral Equations 701 12.4 Finite-Diameter Wires 721 12.5 Computer Codes 730 12.6 Multimedia 733 References 733 Problems 735 13 Geometrical Theory of Diffraction 739 13.
1 Introduction 739 13.2 Geometrical Optics 740 13.3 Geometrical Theory of Diffraction: Edge Diffraction 759 13.4 Computer Codes 827 13.5 Multimedia 829 References 830 Problems 833 14 Diffraction by a Wedge with Impedance Surfaces 847 14.1 Introduction 847 14.2 Impedance Surface Boundary Conditions 849 14.3 Impedance Surface Reflection Coefficients 850 14.
4 The Maliuzhinets Impedance Wedge Solution 852 14.5 Geometrical Optics 854 14.6 Surface Wave Terms 863 14.7 Diffracted Fields 865 14.8 Surface Wave Transition Field 873 14.9 Computations 875 14.10 Multimedia 877 References 878 Problems 881 15 Green''s Functions 883 15.1 Introduction 883 15.
2 Green''s Functions in Engineering 884 15.3 Sturm-Liouville Problems 889 15.4 Two-Dimensional Green''s Function in Rectangular Coordinates 906 15.5 Green''s Identities and Methods 917 15.6 Green''s Functions of the Scalar Helmholtz Equation 923 15.7 Dyadic Green''s Functions 935 15.8 Multimedia 938 References 938 Problems 939 16 Artificial Impedance Surfaces 943 16.1 Introduction 943 16.
2 Corrugations 945 16.3 Artificial Magnetic Conductors, Electromagnetic Bandgap, and Photonic Bandgap Surfaces 947 16.4 Design of Mushroom AMC 950 16.5 Surface-Wave Dispersion Characteristics 955 16.6 Limitations of The Design 959 16.7 Applications of AMCs 959 16.8 RCS Reduction Using Checkerboard Metasurfaces 960 16.9 Antenna Fundamental Parameters and Figures-of-Merit 980 16.
10 Antenna Applications 982 16.11 High-Gain Printed Leaky-Wave Antennas Using Metasurfaces 997 16.12 Metasurface Leaky-Wave Antennas 999 16.13 Multimedia 1013 References 1014 Problems 1019 Appendix I Identities 1023 Appendix II Vector Analysis 1027 Appendix III Fresnel Integrals 1037 Appendix IV Bessel Functions 1043 Appendix V Legendre Polynomials and Functions 1057 Appendix VI the Method of Steepest Descent (saddle-point Method) 1073 Glossary 1079 Index 1085.