Preface xv 1 Fundamentals of Acoustic Wave Generation and Propagation 1 Mehmet A. Sahin, Mushtaq Ali, Jinsoo Park, and Ghulam Destgeer 1.1 Introduction 1 1.1.1 Acoustic or Sound Waves 1 1.1.2 Dominos Effect 1 1.1.
3 Elastic vs Inelastic Waves 2 1.1.4 Scope of Acoustics 4 1.2 Brief History of Acoustic Waves 4 1.2.1 Early History 4 1.2.2 History of Acoustic Streaming 4 1.
2.3 History of Acoustic Radiation Force 5 1.3 What Is an Acoustic Wave? 6 1.3.1 Acoustic Parameters 6 1.3.2 Displacement, Velocity, and Pressure Fields 6 1.3.
3 Wave Propagation 7 1.3.4 Wave Dissipation 7 1.3.5 Wave Dispersion 8 1.4 Modes of Acoustic Waves 8 1.4.1 Categorization Based on Frequency Range 9 1.
4.2 Categorization Based on Propagation Mode 9 1.4.2.1 Longitudinal Waves 9 1.4.2.2 Shear Waves 10 1.
4.2.3 Rayleigh Waves 11 1.4.2.4 Love Waves 12 1.4.2.
5 Lamb Waves 12 1.4.3 Categorization Based on Wave Configuration 12 1.4.3.1 Traveling Waves 12 1.4.3.
2 Standing Waves 13 1.5 Acoustic Wave Propagation and Interaction 13 1.5.1 Transmission and Reflection of Acoustic Waves 13 1.5.2 Acoustic Scattering 14 1.5.3 Acoustic Radiation 16 1.
6 Acoustic Wave Attenuation 18 1.6.1 Viscoelastic Attenuation 18 1.6.2 Acousto-Thermal Heating 19 1.6.3 Acoustic Streaming Flow 19 1.6.
3.1 Eckart Streaming 20 1.6.3.2 Rayleigh Streaming 20 1.6.3.3 Bubble-Driven Microstreaming 21 1.
6.3.4 Applications of Acoustic Streaming Flow 21 1.7 Generation and Propagation of Acoustic Waves 22 1.7.1 Acoustic Waves Generation in Nature 22 1.7.2 Generation of Acoustic Waves in Lab 22 1.
7.2.1 Lower-Frequency Acoustic Waves 22 1.7.2.2 Piezoelectricity and High-Frequency Wave Generation 23 1.8 Acoustic Waves Effects in Fluidic Media 24 1.8.
1 Vibrating Membranes and Sharp-Edge Structures 25 1.8.2 Oscillating Bubbles 25 1.8.2.1 Cavitation 26 1.8.3 Optoacoustic Imaging 27 1.
8.4 Manifestations of Acoustic Radiation Force and Acoustic Streaming Flow 28 List of Abbreviations and Symbols 28 References 29 2 Basic Theories and Physics of Acoustic Technologies 37 Khemraj G. Kshetri and Nitesh Nama 2.1 Introduction 37 2.2 Acoustic Waves in Solids 38 2.2.1 Governing Equation 39 2.2.
2 Acoustic Waves in Non-piezoelectric Solids 39 2.2.3 Acoustic Waves in Piezoelectric Solids 40 2.3 Acoustic Waves in Fluids 40 2.3.1 Governing Equations 40 2.3.2 Acoustic Streaming 41 2.
3.2.1 Modeling Approach for Slow Streaming 44 2.3.2.2 Modeling Approach for Fast Streaming 45 2.3.3 Distinction Between Lagrangian and Eulerian Fluid Velocity and Stokes'' Drift 46 2.
3.4 Acoustic Streaming Near Solid Particles 47 2.3.5 Acoustic Streaming Near Fluid-Fluid Interfaces 47 2.4 Forces in Acoustofluidic Systems 49 2.4.1 Primary Acoustic Radiation Force 49 2.4.
2 Secondary Acoustic Radiation Force 52 2.4.2.1 Forces Between Two Rigid Spheres 53 2.4.2.2 Forces Between Two Bubbles 53 2.4.
2.3 Forces Between a Solid Particle and a Bubble 54 2.4.2.4 Forces Between a Liquid Drop and a Bubble 55 2.4.3 Hydrodynamic Drag Force 55 2.5 Conclusions and Perspectives 57 References 58 3 Materials for Acoustic Wave Generation and Modulation 67 Noé Jiménez 3.
1 Introduction 67 3.1.1 Generation and Detection of Ultrasound 67 3.1.2 Technologies for Ultrasound Transducers 68 3.2 Piezoelectricity 68 3.2.1 Model Equations 68 3.
2.1.1 Stress-Charge Formulation 69 3.2.1.2 Strain-Charge Formulation 70 3.2.1.
3 Stress-Field Formulation 70 3.2.1.4 Strain-Field Formulation 70 3.2.2 The Piezoelectric Constants 70 3.2.3 Longitudinal Motion in a Piezoelectric Material 71 3.
2.3.1 A Simple Piezoelectric Model 71 3.2.3.2 Waves in the Piezoelectric Material 72 3.3 Piezoelectric Materials 73 3.3.
1 Piezoelectric Crystals 73 3.3.2 Piezoelectric Ceramics 74 3.3.3 Piezoelectric Polymers 74 3.3.4 Piezoelectric Composites 74 3.4 Ultrasound Transducers 75 3.
4.1 Elements of a Transducer 75 3.4.2 The Piezoelectric Slab 75 3.4.3 Matching Layers 76 3.4.3.
1 Classical Matching Layer Design 76 3.4.3.2 Multiple Matching Layer Design 77 3.4.3.3 Broadband Matching Layer Design 77 3.4.
4 Backing Layer 77 3.4.5 Electrical Impedance Matching Network 78 3.5 Ultrasound Beams 78 3.5.1 Circular Aperture Transducers 78 3.5.2 Focused Transducers 80 3.
5.3 Phased-Array Transducers 83 3.6 Acoustic Lenses 83 3.6.1 Refraction by Bulky Lenses 84 3.6.1.1 Spherical Lenses 84 3.
6.1.2 Ellipsoidal Lenses 85 3.6.1.3 Axicon Lenses 85 3.6.1.
4 Frensel and Fraxicon Lenses 86 3.6.1.5 Lenses for Vortex Generation 86 3.6.2 Diffraction by Gratings 87 3.6.2.
1 Cartesian Diffraction Grating 87 3.6.2.2 Asymmetric Diffraction Grating 87 3.6.2.3 Fresnel Zone Plates 88 3.6.
2.4 Archimedean Spiral Gratings 89 3.6.2.5 Fresnel-Spiral Zone Plate 90 3.6.3 Reflection by Curved Surfaces 90 3.6.
3.1 Parabolic Reflectors 91 3.6.3.2 Ellipsoidal Reflectors 91 3.6.4 Holograms 91 3.6.
4.1 Field Projections 91 3.6.4.2 Synthesis of Acoustic Images 93 3.6.4.3 Biomedical Applications of Holograms 94 References 95 4 Ultrasound and Ultrasonic Imaging in Medicine: Recent Advances 99 Tugba Ö.
Onur 4.1 Introduction 99 4.2 Ultrasound Waves 99 4.2.1 Types of Ultrasonic Waves 100 4.2.2 Behavior of Ultrasound Waves at Interfaces 100 4.2.
3 Ultrasound Power and Intensity 101 4.2.4 Ultrasound Applications 102 4.3 Ultrasonic Imaging 103 4.3.1 Ultrasonic Imaging System 106 4.3.1.
1 Transducer 106 4.3.1.2 Probes 107 4.3.1.3 Central Processing Unit 109 4.3.
1.4 Output Display 109 4.3.2 Focus 109 4.3.3 Resolution 109 4.3.4 Beamforming 110 4.
4 Sound-Tissue Interactions in Ultrasonography 110 4.4.1 Reflection 110 4.4.2 Refraction 111 4.4.3 Absorption 112 4.4.
4 Attenuation 112 4.4.4.1 Attenuation by Reflection, Refraction, and Deflection 112 4.4.4.2 Attenuation by Scattering 113 4.4.
4.3 Attenuation by Absorption 113 4.4.4.4 Time Gain Reduction (TGR) and Depth Gain Reduction (DGR) 114 4.5 Ultrasonic Imaging Methods 114 4.5.1 Real-Time Imaging 114 4.
5.1.1 A-Mode 115 4.5.1.2 M-Mode 116 4.5.1.
3 B-Mode 117 4.5.2 Doppler Ultrasonography 118 4.5.2.1 Continuous Wave Doppler 119 4.5.2.
2 Duplex Doppler 119 4.5.2.3 Color Doppler 119 4.5.3 Real-Time Artifacts in Imaging 119 4.5.4 Factors Affecting Image Quality 120 4.
6 Tissue Harmonic Imaging (THI) 121 4.6.1 The Occurrence of Harmonic Signals 121 4.6.2 The Separation of Harmonic Signals from the Main Signal 122 4.6.3 The Advantages of Harmonic Signals 122 4.7 Recent Advances in Ultrasound Imaging for Medicine 122 References 123 5 Photoacoustic Imaging and Sensing for Biomedical Applications 127 Amalina B.
E. Attia, Ruochong Zhang, Mohesh Moothanchery, and Malini Olivo 5.1 Introduction 127 5.2 Photoacoustic Imaging Applications 130 5.2.1 PAI of Breast Cancer 130 5.2.1.
1 In Vivo Imaging 130 5.2.1.2 Ex Vivo Imaging 132 5.2.2 PAI for Skin Imaging 133 5.2.2.
1 PAI of Skin Cancer 135 5.2.2.2 PAI of Inflammatory Skin Diseases 137 5.2.2.3 PAI of Wounds 137 5.3 Photoacoustic Sensing for Biomedical Applications 139 5.
3.1 Noninvasive Temperature Monitoring in Deep Tissue 139 5.3.2 Noninvasive Glucose Sensing 142 References 148 6 Therapeutic Ultrasound 159 Bar Glickstein, Hila Shinar, and Tali Ilovitsh 6.1 Introduction 159 6.2 Ultrasound-Induced Bioeffects 160 6.2.1 Introduction 160 6.
2.2 Thermal Effects 160 6.2.3 Mechanical Effects 161 6.2.3.1 Cavitation 161 6.2.
4 Contrast-Enhanced Effects 161 6.2.4.1 Microbubbles 161 6.2.4.2 Nanobubbles 162 6.2.
4.3 Nanodroplets 162 6.2.5 Safety and Regulations 163 6.3 Therapeutic Ultrasound Applications 164 6.3.1 High-Intensity Focused Ultrasound 164 6.3.
2 Histotripsy 166 6.3.3 Shock Wave Lithotripsy 169 6.3.4 Drug Delivery and Gene Therapy 170 6.3.5 Blood-Brain Barrier Opening 171 6.3.
6 Low-Intensity Ultrasound for Neuromodulation 172 6.3.7 Bone Healing 172 6.3.8 Sonothrombolysis 172 6.3.9 Other Applications 173 6.4 Conclusions 173 References 174 7 Application of Ultrasound-Responsive Reagents for Drug Delivery Systems 181 Hiroshi Kida and Katsuro Tachibana 7.
1 Historical Background of Research on Bubble Reagents for Medicine 181 7.2 Use of Bubble Reagents as Drug Delivery Systems 182 7.2.1 Acoustic Cavitation 182 7.2.2 Importance of Inertial and Non-inertial Cavitation in Improving Drug Permeability 184 7.2.3 Targeting and Focusing Using Acoustic Means 186 7.
3 Variation of Ultrasound-Responsive Reagents for DDS 186 7.3.1 Shell Composition 186 7.3.2 Improved Stability by Polyethylene Glycol (PEG) Modification 187 7.3.3 Modification with Targeting Li.