Browse Subject Headings
Microbial Electrochemical Technologies : Fundamentals and Applications
Microbial Electrochemical Technologies : Fundamentals and Applications
Click to enlarge
ISBN No.: 9783527839001
Pages: 768
Year: 202401
Format: E-Book
Price: $ 276.00
Dispatch delay: Dispatched between 7 to 15 days
Status: Available (Forthcoming)

Preface xiii 1 Overview of High-Temperature Polymers 1 Xue-Jie Liu, Mengyu Xiao, Wenjie Huang, Xing Yang, and Jun-Wei Zha 1.1 Introduction 1 1.2 Development of High-Temperature Polymers 2 1.3 Parameters of Polymers with High Temperature Resistance 3 1.4 Thermal Analysis Technology 5 1.4.1 Differential Scanning Calorimetry (DSC) 5 1.4.


2 Dynamic Thermomechanical Analysis (DMA) 5 1.4.3 Thermogravimetric Analysis (TGA) 6 1.4.4 Static Thermomechanical Analysis (TMA) 7 1.4.5 Thermal Conductivity 8 1.4.


6 Dynamic Dielectric Analysis (DEA) 9 1.5 High-Temperature Polymer Materials 9 1.5.1 Commercial High-Temperature Polymer 9 1.5.2 Molecular Structure Modification of High-Temperature Polymer 11 1.5.3 High-Temperature Polymer-Based Composite Materials 13 1.


6 Summary and Outlook 14 References 15 2 Basic Principles of Dielectrics 21 Anastasios Chr. Patsidis and Georgios Chr. Psarras 2.1 Introduction 21 2.2 Definition of Dielectrics 21 2.3 Dipole Moment and Types of Dielectric Materials 22 2.4 Polarization and Dielectric Permittivity 23 2.5 Polarization Under Static Electric Field 24 2.


5.1 Dielectric Permittivity and Polarizability 24 2.5.2 Dipole''s Local Electric Field 27 2.5.3 Models for Static Dielectric Permittivity: Debye, Onsager, Kirkwood, and Fröhlich 29 2.6 Polarization Under Time Varying Electric Field 32 2.6.


1 Frequency Dependent Dielectric Permittivity - Debye''s Equations 33 2.6.2 Models of Dielectric Relaxations 34 2.6.3 Effect of Temperature 36 2.7 Conduction Phenomena in Dielectrics 38 2.8 Active Dielectrics 40 2.9 Polymers as Dielectric Materials 43 2.


9.1 Dielectric Relaxations in Polymers 43 2.9.2 Heterogenous Systems - Polymer Matrix Composites 45 2.10 Thermal Properties of Dielectrics 47 2.10.1 Heat Capacity 47 2.10.


2 Thermal Conduction of Dielectrics 50 2.11 Concluding Remarks 51 Acknowledgements 51 References 52 3 High-Temperature Energy Storage Polymer Dielectrics for Capacitors 57 Zongliang Xie, He Li, Zongren Peng, and Yi Liu 3.1 Introduction 57 3.2 Basic Parameters of High-Temperature Capacitor Materials 60 3.2.1 Electrical Characteristics of High-Temperature Capacitor Materials 60 3.2.1.


1 Energy Storage Parameters 60 3.2.1.2 Dielectric Constant and Dielectric Loss 61 3.2.1.3 Dielectric Breakdown Strength 63 3.2.


1.4 Electrical Conduction and Charge Injection 64 3.2.2 Thermal Characteristics of high-Temperature Capacitor Materials 65 3.2.3 Self-Clearing Abilities of High-Temperature Capacitor Materials 67 3.3 Randomly Dispersed Polymer/Inorganic Nanofiller Composites 69 3.3.


1 Composites Filled with Insulating Fillers 70 3.3.1.1 Composites Filled with Metal Oxides 70 3.3.1.2 Composites Filled with Nitrides and Fluorides 71 3.3.


2 Composites Filled with Conductive or Semi-Conductive Fillers 74 3.3.3 Composites Co-filled with Both Insulating and Semi-Conductive Fillers 76 3.4 Core@Shell-Structured Nanofillers for Polymer Composites 76 3.4.1 Organic Shells for Inorganic Nanoparticles 77 3.4.2 Inorganic Shells for Inorganic Nanoparticles 79 3.


5 Layered Polymer Composites 80 3.5.1 Polymer Films with Inorganic Layers 80 3.5.2 Sandwich-Structured Nanocomposites 83 3.6 Novel Polymers and All-Organic Polymer Composites 85 3.6.1 Novel Polymers 86 3.


6.1.1 Structural Modification of Commercial High-T g Polymers 86 3.6.1.2 Cross-linked Polymers 87 3.6.1.


3 Wide Bandgap Polymers 88 3.6.1.4 Polymers with Polar Groups 89 3.6.2 All-Organic Polymer Composites 90 3.6.2.


1 Polymer Blends 90 3.6.2.2 Polymer Doped with Organic Fillers 92 3.6.2.3 All-Organic Layered Polymer Composites 92 3.7 Conclusion and Perspective 94 References 95 4 Review on High-Temperature Polymers for Cable Insulation: State-of-the-Art and Future Developments 103 Youcef Kemari, Guillaume Belijar, Zarel Valdez-Nava, Frédéric Forget, and Sombel Diaham 4.


1 Brief History of Cables Development and Insulating Materials 103 4.2 Technologies of Modern Power Cables 106 4.2.1 Designs and Manufacturing Processes 106 4.2.1.1 Wrapping Technology 106 4.2.


1.2 Extrusion Technology 110 4.2.1.3 Micro-Multilayer Multifunctional Electrical Insulation (MMEI) System 112 4.2.2 Insulating Material Considerations for High-Temperature Cables 113 4.2.


2.1 Electrical Requirements 116 4.2.2.2 Thermal Requirements 117 4.2.2.3 Mechanical Requirements 118 4.


2.2.4 Environmental and Functional Considerations 119 4.2.2.5 Flame Resistance 120 4.2.2.


6 Smoke Evolution 121 4.2.2.7 Toxicity 121 4.2.2.8 Corrosivity 121 4.2.


2.9 Heat Release 121 4.2.2.10 Radiation Resistance 122 4.2.2.11 Chemical Resistance 122 4.


2.2.12 Recapitulation of Important Standards for Cables Testing 125 4.3 Review of the Most Relevant Electrical Characteristics of High Temperature Insulating Materials 125 4.3.1 Dielectric Spectroscopy 125 4.3.2 Partial Discharges 130 4.


3.3 Space Charge and DC Conductivity 133 4.3.4 Aging and Degradation 137 4.4 Trends and Outlooks 140 Author''s Note 142 References 142 5 High-Temperature Polymer-Based Dielectrics for Advanced Electronic Packaging 149 Jie Liu, Peng Li, Jianwei Zhao, and Shuhui Yu 5.1 Introduction 149 5.1.1 Development of Electronic Packaging Technology 150 5.


1.2 Requirement of Polymer-Based Dielectrics for Advanced Electronic Packaging Application 152 5.1.2.1 Dielectric Properties 155 5.1.2.2 Thermal and Thermal-Mechanical Properties 157 5.


1.2.3 Dynamic Thermomechanical Properties 157 5.1.2.4 Thermal Expansion Coefficient 157 5.1.2.


5 Thermal Conductivity 158 5.1.2.6 Other Requirements 159 5.2 High-Temperature Polymer and Polymer-Based Dielectrics 160 5.2.1 High-Temperature Polymer Dielectrics 160 5.2.


1.1 Polyimide 160 5.2.1.2 Epoxy Resins 163 5.2.1.3 Benzocyclobutene Resins 165 5.


2.1.4 Benzoxazine Resins 167 5.2.1.5 Polyaryl Ether 167 5.2.1.


6 Organic Porous Materials 168 5.2.2 High-Temperature Polymer-Based Composite Dielectrics 169 5.2.2.1 Inorganic Fillers 169 5.2.2.


2 Inorganic Porous Fillers 171 5.2.2.3 Organic Porous Fillers 171 5.3 Summary and Perspectives 172 References 173 6 High-Temperature Polymer Dielectrics for Printed Circuit Board 181 Xu Wang, Xinyu Chen, Junhui Luo, Xin Wang, Yan Chen, and Xiangyang Liu 6.1 Epoxy Resin Used for PCB 182 6.1.1 Structure of Epoxy Resins 182 6.


1.2 Properties and Application of Epoxy 184 6.1.3 Epoxy Resin Used for CCL in PCB 185 6.2 Phenolic Resins Used for PCB 188 6.2.1 Structure of Phenolic Resins 188 6.2.


2 Synthesis of Phenolic Resins 188 6.2.2.1 Synthesis of Thermoplastic Phenolic Resins 189 6.2.2.2 Thermosetting Phenolic Resins 190 6.2.


3 Properties of Phenolic Resins and Their Application in PCBs 191 6.2.3.1 Application of Phenolic Resins in Copper-Clad Laminates 192 6.2.3.2 Tung Oil-Modified Phenolic Resin 192 6.2.


3.3 Linear Phenolic Resins 193 6.2.3.4 Nitrogen-Containing Phenolic Resins 194 6.2.3.5 Polybenzoxazine Used for PCB 195 6.


2.4 Prospect 196 6.3 Polyimide Used for PCB 197 6.3.1 Introduction to Polyimide and its Performance Characteristics 197 6.3.2 Synthesis Method of PI 197 6.3.


2.1 One-Step Method 197 6.3.2.2 Two-Step Method 198 6.3.2.3 Three-Step Method 199 6.


3.3 Classification of PI 199 6.3.3.1 Non-Fusible and Insoluble PI 199 6.3.3.2 Fusible PI, Thermoplastic PI 200 6.


3.4 Performance Characteristics of PI 201 6.3.5 Application of PI in CCLs 201 6.3.5.1 Application of PI in Rigid CCLs 201 6.3.


5.2 Application of PI in Flexible Copper-Clad Laminate 202 6.3.5.3 Application of Thermoplastic Polyimide in Double-Sided Copper Laminates 203 6.3.6 Prospect 206 6.4 Polymer Materials Used for PCB at High Frequency 206 6.


4.1 Polytetrafluoroethylene (PTFE) Used for PCB 207 6.4.1.1 Structure and Properties of PTFE 207 6.4.1.2 PTFE Used for PCB 209 6.


4.2 Liquid Crystal Polymer (LCP) Used for PCB 211 6.4.2.1 Structure and Properties of LCP 211 6.4.2.2 LCP Used for PCB 213 6.


4.3 Other Resins with Potential in the Field of High-Frequency Communications 215 6.4.3.1 Cyanate Ester (CE) Used for PCB 215 6.4.3.2 Polyphenylene Oxide (PPO) Used for PCB 218 6.


4.4 Prospect of Polymer Resin for PBC at High Frequency 220 References 221 7 High-Temperature Polymer Dielectrics for New Energy Power Equipment 227 Meng Xiao, Zhiyuan Zhang, Yuyan Chen, Xiaodan Du, and Boxue Du 7.1 Introduction 227 7.2 High-frequency Power Transformer and Dry-type Bushing 228 7.2.1 Modification of Epoxy Resin 228 7.2.1.


1 Change the Molecular Chain 229 7.2.1.2 Develop the Curing Agent with Better Thermal Stability 232 7.2.1.3 Filling Modification 232 7.3 Modification of Polyimide 233 7.


3.1 Filling Modification 234 7.3.2 Introduce Rigid Groups 235 7.3.3 Form the Cross-linked Structure 237 7.4 High-temperature Resistant Dielectric Material for Capacitor 239 7.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings