Foreword xxi List of Contributors xxv 1 Introduction 1 Thomas Engel and Johann Gasteiger 1.1 The Rationale for the Books 1 1.2 The Objectives of Chemoinformatics 2 1.3 Learning in Chemoinformatics 4 1.4 Outline of the Book 5 1.5 The Scope of the Book 7 1.6 Teaching Chemoinformatics 8 References 8 2 Principles of Molecular Representations 9 Thomas Engel 2.1 Introduction 9 2.
2 Chemical Nomenclature 11 2.2.1 Non-systematic Nomenclature (Trivial Names) 11 2.2.2 Systematic Nomenclature of Chemical Compounds 12 2.2.3 Drawbacks of Chemical Nomenclature for Data Processing 12 2.3 Chemical Notations 12 2.
3.1 Empirical Formulas of Inorganic and Organic Compounds 12 2.3.2 Line Notations 14 2.4 Mathematical Notations 14 2.4.1 Introduction into Graph Theory 15 2.4.
2 Matrix Representations 18 2.4.2.1 Adjacency Matrix 18 2.4.2.2 Incidence Matrix 19 2.4.
2.3 Distance Matrix 20 2.4.2.4 Bond Matrix 21 2.4.2.5 Bond-Electron Matrix 21 2.
4.2.6 Summary on Matrix Representations 23 2.4.3 Connection Table 23 2.5 SpeciFic Types of Chemical Structures 25 2.5.1 General Concepts of Isomerism 25 2.
5.2 Tautomerism 26 2.5.3 Markush Structures 27 2.5.4 Beyond a Connection Table Representation 28 2.5.4.
1 Representation of Molecular Structures by Electron Systems 28 2.6 Spatial Representation of Structures 31 2.6.1 Representation of ConFigurational Isomers 32 2.6.2 Chirality 33 2.6.3 3D Coordinate Systems 36 2.
7 Molecular Surfaces 37 Selected Reading 38 References 393 3 Computer Processing of Chemical Structure Information 43 Thomas Engel 3.1 Introduction 43 3.2 Standard File Formats for Chemical Structure Information 44 3.2.1 SMILES 44 3.2.1.1 Stereochemistry in SMILES 47 3.
2.1.2 Summary on SMILES 47 3.2.2 SMARTS 47 3.2.3 SYBYL Line Notation 48 3.2.
4 The International Chemical IdentiFier (InChI) and InChIKey 48 3.2.5 XYZ Format 50 3.2.6 Z-Matrix 51 3.2.7 The MolFile Format Family 52 3.2.
7.1 Structure of a MolFile 53 3.2.7.2 Stereochemistry in the MolFile 57 3.2.7.3 Structure of an SDFile 57 3.
2.8 The PDB File Format 58 3.2.8.1 Introduction/History 58 3.2.8.2 General Description 58 3.
2.8.3 Analysis of a Sample PDB File 60 3.2.9 Metadata Formats 65 3.2.9.1 STAR-Based File Formats and Dictionaries 65 3.
2.9.2 CIF File Format 66 3.2.9.3 mmCIF File Format 67 3.2.9.
4 CML 68 3.2.9.5 CSRML 68 3.2.10 Libraries for Handling Information in Structure File Formats 69 3.3 Input and Output of Chemical Structures 70 3.3.
1 Molecule Editors 72 3.3.2 Molecule Viewers 73 3.4 Processing Constitutional Information 73 3.4.1 Structure Isomers and Isomorphism 73 3.4.2 Tautomerism 74 3.
4.3 Unambiguous and Biunique Representation by Canonicalization 76 3.4.3.1 The Morgan Algorithm 77 3.4.4 Ring Perception 79 3.4.
4.1 Introduction 79 3.4.4.2 Graph Terminology 80 3.4.4.3 Ring Perception Strategies 81 3.
5 Processing 3D Structure Information 86 3.5.1 Detection and SpeciFication of Chirality 86 3.5.1.1 Detection of Chirality 87 3.5.1.
2 SpeciFication of Chirality 87 3.5.2 Automatic Generation of 3D Structures 90 3.5.3 Automatic Generation of Ensemble of Conformations 94 3.6 Visualization of Molecular Models 100 3.6.1 Introduction 100 3.
6.2 Models of the 3D Structure 101 3.6.2.1 Wire Frame and Capped Sticks Model 101 3.6.2.2 Ball-and-Stick Model 101 3.
6.2.3 Space-Filling Model 102 3.6.2.4 Crystallographic Models 102 3.6.3 Models of Biological Macromolecules 102 3.
6.4 Virtual Reality 103 3.6.5 3D Printing 103 3.7 Calculation of Molecular Surfaces 103 3.7.1 Van der Waals Surface 104 3.7.
2 Connolly Surface 104 3.7.3 Solvent-Accessible Surface 105 3.7.4 Enzyme Cavity Surface (Union Surface) 106 3.7.5 Isovalue-Based Electron Density Surface 106 3.7.
6 Experimentally Determined Surfaces 106 3.7.7 Visualization of Molecular Surface Properties 107 3.7.8 Property-based Isosurfaces 107 3.7.8.1 Electrostatic Potentials 108 3.
7.8.2 Hydrogen Bonding Potential 108 3.7.8.3 Polarizability and Hydrophobicity Potential 108 3.7.8.
4 Spin Density 108 3.7.8.5 Vector Fields 108 3.7.8.6 Volumetric Properties 108 3.8 Chemoinformatic Toolkits and Workow Environments 109 Selected Reading 111 References 111 4 Representation of Chemical Reactions 121 Oliver Sacher and Johann Gasteiger 4.
1 Introduction 121 4.2 Reaction Equation 122 4.3 Reaction Types 123 4.4 Reaction Center and Reaction Mechanisms 125 4.5 Chemical Reactivity 126 4.5.1 Physicochemical Eects 126 4.5.
1.1 Charge Distribution 126 4.5.1.2 Inductive Eect 127 4.5.1.3 Resonance Eect 127 4.
5.1.4 Polarizability Eect 128 4.5.1.5 Steric Eect 128 4.5.1.
6 Stereoelectronic Eects 128 4.5.2 Simple Methods for Quantifying Chemical Reactivity 128 4.5.2.1 Frontier Molecular Orbital Theory 128 4.5.2.
2 Linear Free Energy Relationships 130 4.6 Learning from Reaction Information 132 4.7 Building of Reaction Databases 133 4.7.1 Contents 133 4.7.2 Reaction Data Exchange Formats 134 4.7.
2.1 RXN/RDF format by MDL/Symyx 134 4.7.2.2 Reaction SMILES/SMIRKS by Daylight Chemical Information Systems 134 4.7.2.3 Chemical Markup Language 135 4.
7.2.4 International Chemical IdentiFier for Reactions (RinChI) 135 4.7.3 Input and Output of Reactions 135 4.8 Reaction Center Perception 138 4.9 Reaction ClassiFication 139 4.9.
1 Model-Driven Approaches 139 4.9.1.1 Ugi''s Scheme and Some Follow-Ups 140 4.9.1.2 InfoChem''s Reaction ClassiFication 143 4.9.
2 Data-Driven Approaches 145 4.9.2.1 HORACE 145 4.9.2.2 Reaction Landscapes 146 4.10 Stereochemistry of Reactions 148 4.
11 Reaction Networks 149 Selected Reading 151 References 152 5 The Data 155 5.1 Introduction 155 5.2 Data Types 156 5.2.1 Numerical Data 157 5.2.2 Molecular Structures 159 5.2.
3 Bit Vectors 160 5.2.3.1 Hash Codes 160 5.2.3.2 Structural Keys 162 5.2.
3.3 Fingerprints 163 5.2.4 Chemical Reactions 164 5.2.5 Molecular Spectra 165 5.3 Storage and Manipulation of Data 169 5.3.
1 Experimental Data 169 5.3.1.1 Types of Data on Properties 170 5.3.1.2 Accuracy of the Data 170 5.3.
2 Data Storage and Exchange 171 5.3.2.1 DAT File 171 5.3.2.2 JCAMP-DX 171 5.3.
2.3 Predictive Model Markup Language (PMML) 172 5.3.3 Real-World Data 173 5.3.3.1 Data Complexity 173 5.3.
3.2 Outliers and Redundant Objects 174 5.3.4 Data Transformation 175 5.3.4.1 Fast Fourier Transformation 175 5.3.
4.2 Wavelet Transformation 175 5.3.5 Preparation of Datasets for Building of Models and Validations of Their Quality 176 5.4 Conclusions 177 Selected Reading 178 References 179 6 Databases and Data Sources in Chemistry 185 Engelbert Zass and Thomas Engel 6.1 Introduction 185 6.2 Chemical Literature and Databases 186 6.2.
1 ClassiFication of Chemical Literature 186 6.2.2 The Origin of Chemical Databases 187 6.2.3 Evolution of Database Systems and User Interfaces 187 6.3 Major Chemical Database Systems 188 6.3.1 SciFinder 188 6.
3.2 Reaxys 189 6.3.3 SciFinder versus Reaxys 190 6.4 Compound Databases 191 6.4.1 2D Structures 191 6.4.
1.1 Searching Organic Compounds 192 6.4.1.2 Searching Inorganic and Coordination Compounds 194 6.4.2 Sequences of Biopolymers 195 6.4.
3 3D Structures 198 6.4.4 Catalog Databases 200 6.5 Databases with Properties of Compounds 200 6.5.1 Physical Properties 201 6.5.2 Thermodynamic and Thermochemical Data 202 6.
5.3 Spectra 204 6.5.3.1 Spectroscopic Databases 205 6.5.3.2 Compound Databases with Spectroscopic Information 205 6.
5.4 Biological, Environmental, and Safety Information Sources 206 6.5.4.1 Biological Information 207 6.5.4.2 Pharmaceutical and Medical Information 208 6.
5.4.3 Toxicity, Environmental, and Safety Information 209 6.6 Reaction Databases 210 6.6.1 Comprehensive Reaction Databases 210 6.6.2 Synthetic Methodology Databases 212 6.
7 Bibliographic and Citation Databases 212 6.7.1 Bibliographic Databases 213 6.7.1.1 Special Bibliographic Databases 213 6.7.1.
2 Patent Bibliographic Databases 214 6.7.1.3 Searching Bibliographic Databases 216 6.7.1.4 Linking to Full Text 216 6.7.
2 Citation Databases 217 6.7.2.1 General Citation Databases 218 6.7.2.2 Patent Citation Databases 219 6.8 Full-Text Databases 219 6.
8.1 Electronic Journals 219 6.8.2 Patents 220 6.8.3 Lexika and Encyclopedias 221 6.9 Architecture of a Structure-Searchable Database 222 Selected Reading 224 References 224 7 Searching Chemical Structures 231 Nikolay Kochev, Valent.