Aimed at researchers in mathematics, philosophy and logic, this book provides the first organic exposition of dynamic constructivism and the mathematics ensuing in practice, including discussion of the technical development of the field and outlining the philosophical and methodological motivations underlying the evolution of the discipline. In dynamic constructivism, mathematics is seen as the result of a dynamic process of interaction between the construction of mathematical entities, by abstraction and by idealization, and their selection according to their efficiency in applications to reality and in the organisation of mathematics itself. The crucial benefit of this vision is its independence from dogmas and external authorities. A practical consequence is full respect for the diverse areas of mathematics - mainly computation, spatial intuition, deduction, and abstract axiomatic method - without reducing one to another. As a second consequence, a dynamic interaction between different 'epistemological levels' is always active and present, in the development of mathematics in practice, the study of its foundations and its formalisation in a computer language.
Positive Topology : A New Practice in Constructive Mathematics