The subject of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. It does indeed provide several potentially useful tools for solving differential, integral and differintegral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. Many books and monographs (and conference proceedings) deal with the subject of fractional calculus and its applications. However, to the best of our knowledge, there does not exist an exclusive work that co-ordinates the disciplines of fractional calculus and special functions in a potentially useful manner. This book is an attempt in that direction and would serve a dual purpose: in providing key formulas and identities involving special functions and also in opening up some novel avenues of applications of fractional calculus.
Special Functions in Fractional Calculus and Related Fractional Differintegral Equations