Browse Subject Headings
The Math You Need : A Comprehensive Survey of Undergraduate Mathematics
The Math You Need : A Comprehensive Survey of Undergraduate Mathematics
Click to enlarge
Author(s): Mack, Thomas
ISBN No.: 9780262546324
Pages: 496
Year: 202310
Format: Trade Paper
Price: $ 75.90
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Contents Introduction . xi 1 Group Theory . 1 1.1 Definitions and Examples . 1 1.2 Subgroups and Group Homomorphisms . 4 1.3 Group Constructions .


8 1.4 The Isomorphism Theorems . 13 1.5 Group Actions . 15 1.6 Cyclic Groups . 16 1.7 Permutation Groups .


20 1.8 p-Groups and the Sylow Theorems . 27 1.9 Solvable and Nilpotent Groups . 30 1.10 Free Groups and Presentations . 35 1.11 Further Topics .


39 1.12 Further Reading . 40 Exercises . 42 2 Commutative Algebra . 45 2.1 Rings . 45 2.2 Ideals .


48 2.3 Polynomials . 52 2.4 Modules . 56 2.5 Module Constructions . 60 2.6 Noetherian Modules .


63 2.7 Prime and Maximal Ideals . 66 2.8 Localization . 70 2.9 Gauss''s Lemma . 76 2.10 Principal Ideal Domains .


78 2.11 Field Extensions . 85 2.12 Finite Fields . 89 2.13 Further Topics . 92 2.14 Further Reading .


93 Exercises . 95 3 Linear Algebra . 99 3.1 Vector Spaces . 99 viii Contents 3.2 Dimension . 103 3.3 Vector Space Constructions .


107 3.4 Eigenvalues and Eigenvectors . 111 3.5 The Determinant . 115 3.6 Matrices . 120 3.7 Matrix Operations .


125 3.8 Inner Product Spaces . 131 3.9 Matrix Decompositions . 138 3.10 Further Topics . 142 3.11 Further Reading .


143 Exercises . 145 4 Topology . 149 4.1 Definitions and Examples . 149 4.2 Continuity . 153 4.3 Topological Space Constructions .


156 4.4 Separation Axioms . 159 4.5 Connectedness . 163 4.6 Compactness . 166 4.7 Tychonoff''s Theorem .


170 4.8 Metric Spaces . 173 4.9 Completeness . 179 4.10 Homotopy . 182 4.11 Further Topics .


186 4.12 Further Reading . 188 Exercises . 189 5 Real Analysis . 193 5.1 Limits . 193 5.2 Infinite Series .


197 5.3 Uniform Convergence . 200 5.4 Differentiation on R . 204 5.5 Taylor''s Theorem . 210 5.6 Measurable Spaces .


214 5.7 Measurable Functions . 217 5.8 Integration . 222 5.9 Measure Extensions . 230 5.10 Borel Measure .


235 5.11 The Fundamental Theorem of Calculus . 238 Contents ix 5.12 Further Topics . 242 5.13 Further Reading . 244 Exercises . 246 6 Multivariable Analysis .


249 6.1 Multivariable Differentiation . 249 6.2 Multivariable Integration . 256 6.3 The Change of Variables Formula . 259 6.4 Differential Equations .


265 6.5 Common Derivatives and Integrals . 268 6.6 The Gaussian Integral . 272 6.7 The Weierstrass Approximation Theorem . 276 6.8 The Constant Rank Theorem .


284 6.9 Further Topics . 290 6.10 Further Reading . 292 Exercises . 293 7 Complex Analysis . 295 7.1 Contour Integrals .


296 7.2 The Jordan Curve Theorem . 302 7.3 The Topology of Contours . 308 7.4 Green''s Theorem . 316 7.5 The Cauchy-Riemann Equations .


321 7.6 Cauchy''s Integral Formula . 324 7.7 Consequences of Cauchy''s Integral Formula . 327 7.8 Meromorphic Functions . 332 7.9 Residues .


338 7.10 The Open Mapping Theorem . 341 7.11 Tauberian Theorems . 345 7.12 Further Topics . 348 7.13 Further Reading .


349 Exercises . 351 8 Number Theory . 353 8.1 Galois Theory . 353 8.2 Algebraic Integers . 359 8.3 Prime Factorization in Ok .


363 8.4 Quadratic Fields . 368 8.5 Cyclotomic Extensions . 371 8.6 Diophantine Equations . 373 8.7 Quadratic Reciprocity .


378 8.8 Solvability by Radicals . 381 8.9 The Riemann ζ-Function . 386 8.10 The Prime Number Theorem . 390 8.11 Further Topics .


394 8.12 Further Reading . 396 Exercises . 398 9 Probability . 401 9.1 Definitions and Constructions . 401 9.2 Densities .


404 9.3 Lp spaces . 408 9.4 The Radon-Nikodym Theorem . 413 9.5 Mean and Variance . 417 9.6 Joint Density Functions .


422 9.7 Common Probability Distributions . 425 9.8 Convergence of Distributions . 432 9.9 Higher Moments and Characteristic Functions . 438 9.10 The Central Limit Theorem .


444 9.11 Further Topics . 445 9.12 Further Reading . 447 Exercises . 448 Appendix . 451 A.1 Set Theory .


451 A.2 The Axiom of Choice . 455 A.3 Cardinality .


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings