Browse Subject Headings
Stability of Markov Chain Monte Carlo Methods
Stability of Markov Chain Monte Carlo Methods
Click to enlarge
Author(s): Kamatani, Kengo
ISBN No.: 9784431552567
Pages: vi, 104
Year: 202503
Format: Trade Paper
Price: $ 80.64
Dispatch delay: Dispatched between 7 to 15 days
Status: Available (Forthcoming)

This book presents modern techniques for the analysis of Markov chain Monte Carlo (MCMC) methods. A central focus is the study of the number of iteration of MCMC and the relation to some indices, such as the number of observation, or the number of dimension of the parameter space. The approach in this book is based on the theory of convergence of probability measures for two kinds of randomness: observation randomness and simulation randomness. This method provides in particular the optimal bounds for the random walk Metropolis algorithm and useful asymptotic information on the data augmentation algorithm. Applications are given to the Bayesian mixture model, the cumulative probit model, and to some other categorical models. This approach yields new subjects, such as the degeneracy problem and optimal rate problem of MCMC. Containing asymptotic results of MCMC under a Bayesian statistical point of view, this volume will be useful to practical and theoretical researchers and to graduate students in the field of statistical computing.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...
Browse Subject Headings