Microwave Circuit Design Using Linear and Nonlinear Techniques
Microwave Circuit Design Using Linear and Nonlinear Techniques
Click to enlarge
Author(s): Pavio, Anthony M.
Vendelin, George D.
ISBN No.: 9781119741725
Pages: 1,088
Year: 202103
Format: Online Resource
Price: $ 274.62
Dispatch delay: Dispatched between 7 to 15 days
Status: Available (Forthcoming)

Foreword xv Preface xvii 1 RF/Microwave Systems 1 1.1 Introduction 1 1.2 Maxwell''s equations 12 1.3 Frequency bands, modes, and waveforms of operation 12 1.4 Analog and digital signals 16 1.5 Elementary functions 25 1.6 Basic RF transmitters and receivers 31 1.7 RF wireless/microwave/millimeter wave applications 33 1.


8 Modern CAD for nonlinear circuit analysis 37 1.9 Dynamic Load Line 37 2 Lumped and Distributed Elements 43 2.1 Introduction 43 2.2 Transition from RF to Microwave Circuits 43 2.3 Parasitic E_ects on Lumped Elements 46 2.4 Distributed Elements 54 2.5 Hybrid Element: Helical Coil 55 v vi CONTENTS 3 Active Devices 61 3.1 Microwave Transistors 61 3.


1.1 Transistor Classi_cation 61 3.1.2 Bipolar Transistor Basics 63 3.1.3 GaAs and InP Heterojunction Bipolar Transistors 77 3.1.4 SiGe HBTs 90 3.


1.5 Field-E_ect Transistor Basics 95 3.1.6 GaN, GaAs, and InP HEMTs 106 3.1.7 MOSFETs 112 3.1.8 Packaged Transistors 130 3.


2 Example: Selecting Transistor and Bias for Low-Noise Ampli_cation 134 3.3 Example: Selecting Transistor and Bias for Oscillator Design 138 3.4 Example: Selecting Transistor and Bias for Power Ampli_cation 141 3.4.1 Biasing HEMTs 143 3.4.2 Biasing HBTs 145 4 Two-Port Networks 153 4.1 Introduction 153 4.


2 Two-Port Parameters 154 4.3 S Parameters 163 4.4 S Parameters from SPICE Analysis 164 4.5 Mason Graphs 165 4.6 Stability 168 4.7 Power Gains, Voltage Gain, and Current Gain 171 4.7.1 Power Gain 171 4.


7.2 Voltage Gain and Current Gain 177 4.7.3 Current Gain 178 4.8 Three-Ports 179 4.9 Derivation of Transducer Power Gain 182 4.10 Di_erential S Parameters 184 4.10.


1 Measurements 186 4.10.2 Example 187 4.11 Twisted-Wire Pair Lines 187 4.12 Low-Noise and High-Power Ampli_er Design 190 4.13 Low-Noise Ampli_er Design Examples 193 5 Impedance Matching 209 5.1 Introduction 209 5.2 Smith Charts and Matching 209 5.


3 Impedance Matching Networks 217 CONTENTS vii 5.4 Single-Element Matching 217 5.5 Two-Element Matching 219 5.6 Matching Networks Using Lumped Elements 220 5.7 Matching Networks Using Distributed Elements 221 5.7.1 Twisted-Wire Pair Transformers 221 5.7.


2 Transmission Line Transformers 223 5.7.3 Tapered Transmission Lines 224 5.8 Bandwidth Constraints for Matching Networks 225 6 Microwave Filters 241 6.1 Introduction 241 6.2 Low-Pass Prototype Filter Design 242 6.2.1 Butterworth Response 242 6.


2.2 Chebyshev Response 245 6.3 Transformations 247 6.3.1 Low-Pass Filters: Frequency and Impedance Scaling 247 6.3.2 High-Pass Filters 250 6.3.


3 Bandpass Filters 251 6.3.4 Narrow-Band Bandpass Filters 255 6.3.5 Band-Stop Filters 259 6.4 Transmission Line Filters 260 6.4.1 Semilumped Low-Pass Filters 263 6.


4.2 Richards Transformation 266 6.5 Exact Designs and CAD Tools 274 6.6 Real-Life Filters 275 6.6.1 Lumped Elements 275 6.6.2 Transmission Line Elements 275 6.


6.3 Cavity Resonators 275 6.6.4 Coaxial Dielectric Resonators 276 6.6.5 Thin-Film Bulk-Wave Acoustic Resonator (FBAR) 276 7 Noise in Linear and Nonlinear Two-Ports 281 7.1 Introduction 281 7.2 Signal-to-Noise Ratio 283 7.


3 Noise Figure Measurements 285 7.4 Noise Parameters and Noise Correlation Matrix 286 7.4.1 Correlation Matrix 287 7.4.2 Method of Combining Two-Port Matrix 288 7.4.3 Noise Transformation Using the [ABCD] Noise Correlation Matrices 288 7.


4.4 Relation Between the Noise Parameter and [CA] 289 viii CONTENTS 7.4.5 Representation of the ABCD Correlation Matrix in Terms of Noise Parameters [13]: 290 7.4.6 Noise Correlation Matrix Transformations 291 7.4.7 Matrix De_nitions of Series and Shunt Element 292 7.


4.8 Transferring All Noise Sources to the Input 292 7.4.9 Transformation of the Noise Sources 294 7.4.10 ABCD Parameters for CE, CC, and CB Con_gurations 294 7.5 Noisy Two-Port Description 295 7.6 Noise Figure of Cascaded Networks 301 7.


7 Inuence of External Parasitic Elements 303 7.8 Noise Circles 305 7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices 309 7.10 Noise Figure Test Equipment 312 7.11 How to Determine Noise Parameters 313 7.12 Noise in Nonlinear Circuits 314 7.12.1 Noise sources in the nonlinear domain 316 7.


13 Transistor Noise Modeling 319 7.13.1 Noise modeling of bipolar and heterobipolar transistors 320 7.13.2 Noise Modeling of Field-e_ect Transistors 332 7.14 Bibliography 342 8 Small- and Large-Signal Ampli_er Design 347 8.1 Introduction 347 8.2 Single-Stage Ampli_er Design 349 8.


2.1 High Gain 349 8.2.2 Maximum Available Gain and Unilateral Gain 350 8.2.3 Low-Noise Ampli_er 357 8.2.4 High-Power Ampli_er 359 8.


2.5 Broadband Ampli_er 360 8.2.6 Feedback Ampli_er 362 8.2.7 Cascode Ampli_er 364 8.2.8 Multistage Ampli_er 370 8.


2.9 Distributed Ampli_er and Matrix Ampli_er 371 8.2.10 Millimeter-Wave Ampli_ers 376 8.3 Frequency Multipliers 376 8.3.1 Introduction 376 8.3.


2 Passive Frequency Multiplication 377 8.3.3 Active Frequency Multiplication 378 8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Ampli_ers 380 8.5 Stability Analysis and Limitations 384 CONTENTS ix 8.6 Problems 391 9 Power Ampli_er Design 393 9.


1 Introduction 393 9.2 Characterizing transistors for power-ampli_er design 396 9.3 Single-Stage Power Ampli_er Design 402 9.4 Multistage Design 408 9.5 Power-Distributed Ampli_ers 417 9.6 Class of Operation 433 9.6.1 Optimizing Conduction Angle 437 9.


6.2 Optimizing Harmonic Termination 446 9.6.3 Analog Switch-Mode Ampli_ers 451 9.7 E_ciency and Linearity Enhancement PA Topologies 456 9.7.1 The Doherty Ampli_er 456 9.7.


2 Outphasing Ampli_ers 460 9.7.3 Kahn EER and Envelope Tracking Ampli_ers 462 9.8 Digital Microwave Power Ampli_ers (class-D/S) 473 9.8.1 Voltage-Mode Topology 475 9.8.2 Current-Mode Topology 480 9.


9 Power Ampli_er Stability 487 10 Oscillator Design 499 10.1 Introduction 499 10.2 Compressed Smith Chart 502 10.3 Series or Parallel Resonance 506 10.4 Resonators 507 10.4.1 Dielectric Resonators 508 10.4.


2 YIG Resonators 512 10.4.3 Varactor Resonators 517 10.4.4 Ceramic Resonators 518 10.4.5 Coupled Resonator 519 10.4.


6 Resonator Measurements 525 10.5 Two-Port Oscillator Design 531 10.6 Negative Resistance From Transistor Model 535 10.7 Oscillator Q and Output Power 547 10.8 Noise in Oscillators: Linear Approach 550 10.8.1 Leeson''s Oscillator Model 550 10.8.


2 Low-Noise Design 557 10.9 Analytic Approach to Optimum Oscillator Design Using S Parameters 568 10.10 Nonlinear Active Models for Oscillators 583 x CONTENTS 10.10.1 Diodes with Hyperabrupt Junction 584 10.10.2 Silicon Versus Gallium Arsenide 585 10.10.


3 Expressions for gm and Gd 587 10.10.4 Nonlinear Expressions for Cgs, Ggf , and Ri 590 10.10.5 Analytic Simulation of I{V Characteristics 591 10.10.6 Equivalent-Circuit Derivation 591 10.10.


7 Determination of Oscillation Conditions 591 10.10.8 Nonlinear Analysis 594 10.10.9 Conclusion 596 10.11 Oscillator Design Using Nonlinear Cad Tools 596 10.11.1 Parameter Extraction Method 600 10.


11.2 Example of Nonlinear Design Methodology: 4-GHz Oscillator{ Ampli_er 604 10.11.3 Conclusion 610 10.12 Microwave Oscillators Performance 610 10.13 Design of an Oscillator Using Large-Signal Y Parameters 614 10.14 Example for Large-Signal Design Based on Bessel Functions 617 10.15 Design Example for Best Phase Noise and Good Output Power 622 10.


16 A Design Example for a 350MHz _xed frequency Colpitts Oscillator 630 10.16.1 1/f Noise: 644 10.17 2400 MHz MOSFET-Based Push{Pull Oscillator 645 10.17.1 Design Equations 647 10.17.2 Design Calculations 652 10.


17.3 Phase Noise 653 10.18 CAD Solution for Calculating Phase Noise in Oscillators 656 10.18.1 General Analysis of Noise Due to Modulation and Conversion in Oscillators 656 10.18.2 Modulation by a Sinusoidal Signal 657 10.18.


3 Modulation by a Noise Signal 658 10.18.4 Oscillator Noise Models 659 10.18.5 Modulation and Conversion Noise 661 10.18.6 Nonlinear Approach for Computation of Noise Analysis of Oscillator Circuits 661 10.18.


7 Noise Generation in Oscillators 663 10.18.8 Frequency Conversion Approach 663 10.18.9 Conversion Noise Analysis 664 10.18.10Noise Performance Index Due to Frequency Conversion 664 10.18.


11Modulation Noise Analysis 666 10.18.12Noise Performance Index Due to Contribution of Modulation Noise 668 10.18.13PM{AM Correlation Coe_cient 669 CONTENTS xi 10.19 Phase Noise Measurement 670 10.19.1 Phase Noise Measurement Techniques 671 10.


20 Back to Conventional Phase Noise Measurement System (Hewlett-Packard) 684 10.21 State-of-the-art 688 10.21.1 ANALO.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...