Understanding Solids : The Science of Materials
Understanding Solids : The Science of Materials
Click to enlarge
Author(s): Tilley, Richard J. D.
ISBN No.: 9781119716501
Pages: 624
Year: 202106
Format: Trade Paper
Price: $ 107.57
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xix Part I States of Aggregation 1 1 Atoms and Bonding 3 1.1 The Electron Structure of Atoms 3 1.1.1 Hydrogen 3 1.1.2 Many Electron Atoms 4 1.1.3 Orbital Shapes 6 1.


1.4 Electron Spin and Electron Configuration 8 1.1.5 Atomic Energy Levels 9 1.2 Ionic Bonding 12 1.2.1 Ionic Size and Bonding 12 1.2.


2 Lattice Energies 13 1.2.3 Atomistic Simulation 14 1.3 Covalent Bonding 15 1.3.1 Bond Geometry 15 1.3.2 Bond Energies 18 1.


4 Metallic Bonding 21 1.4.1 Molecular Orbitals and Energy Bands 21 1.4.2 The Free Electron Gas 22 1.4.3 Energy Bands 24 1.4.


4 Bands in Ionic and Covalent Solids 27 1.5 Weak Chemical Bonds 28 1.6 Computation of Material Properties 31 Further Reading 31 The Following References Expand the Material in this Chapter 31 A Dictionary of Quantum Mechanical Language and Expressions is 32 Ionic Radii are Discussed and Tabulated by 32 The Computation of Properties is Described in 32 Problems and Exercises 32 Calculations and Questions 34 2 Microstructures and Phase Relationships 37 2.1 Macrostructure, Microstructure, and Nanostructure 37 2.1.1 Crystalline Solids 37 2.1.2 Non-crystalline Solids 37 2.


1.3 Partly Crystalline Solids 40 2.1.4 Nanoparticles and Nanostructures 40 2.2 The Development of Microstructures 43 2.2.1 Solidification 43 2.2.


2 Processing 44 2.3 Phase Diagrams 45 2.3.1 One-Component (Unary) Systems 45 2.3.2 Two-Component (Binary) Systems 48 2.3.2.


1 Simple Binary Diagrams: Nickel-Copper as an Example 48 2.3.2.2 Binary Systems Containing a Eutectic Point: Tin-Lead as an Example 49 2.3.2.3 Intermediate Phases 52 2.3.


2.4 The Iron-Carbon System Close to Iron 52 2.4 Ternary Systems 54 References 57 Further Reading 58 Problems and Exercises 58 Calculations and Questions 60 3 Crystal Structures and Defects 65 3.1 Crystal Geometry 65 3.1.1 Crystal Systems 65 3.1.2 Crystal Lattices 66 3.


1.3 Symmetry and Crystal Classes 68 3.2 Crystal Structures 69 3.2.1 Unit Cells and Atomic Coordinates 69 3.2.2 Crystal Structures 70 3.2.


2.1 The Face-Centred Cubic (fcc, A1) Structure 70 3.2.2.2 The Body-Centred Cubic (bcc, A2) Structure 70 3.2.2.3 The Hexagonal Close-Packed (hcp, A3) Structure 70 3.


2.2.4 The Diamond Structure 71 3.2.2.5 The Graphite Structure 71 3.2.2.


6 The Halite (Rock Salt, Sodium Chloride) Structure 71 3.2.2.7 The Perovskite Structure 72 3.2.2.8 The Spinel Structure 72 3.2.


2.9 Lattice Parameters and Vegard''s Law 74 3.3 Crystal Planes and Directions 74 3.3.1 Miller Indices 74 3.3.2 Hexagonal Crystals and Miller-Bravais Indices 76 3.3.


3 Directions 78 3.3.4 Interplanar Spacings 79 3.4 Crystal Density 80 3.4.1 Density Estimation 80 3.4.2 The Density of NaCl 81 3.


4.3 The Density of Crystals with a Variable Composition 81 3.5 Structural Relationships 82 3.5.1 Sphere Packing 82 3.5.2 Ionic Structures in Terms of Anion Packing 84 3.5.


3 Polyhedral Representations 86 3.6 Point Defects 87 3.6.1 Point Defects in Crystals of the Elements 88 3.6.2 Solid Solutions 89 3.6.3 The Schottky and Frenkel Defects 90 3.


6.4 Non-stoichiometric Compounds 91 3.6.5 Point Defect Notation 93 3.7 Linear, Planar, and Volume defects 95 3.7.1 Dislocations 95 3.7.


2 Planar Defects 96 3.7.3 Volume Defects: Precipitates 99 Reference 99 Further Reading 100 Crystal Structures 100 Defects 100 Problems and Exercises 100 Calculations and Questions 102 4 Solids: Overview 109 4.1 Metals 109 4.1.1 Structures 109 4.1.2 Metallic Radii 110 4.


1.3 Alloy Solid Solutions 112 4.1.4 Metallic Glasses and Quasicrystals 115 4.1.5 The Principal Properties of Metals 116 4.2 Crystalline Silicates and Inorganic Ceramic Materials 118 4.2.


1 Silicate Structures 119 4.2.2 Some Non-silicate Ceramics 122 4.2.3 The Preparation and Processing of Ceramics 125 4.2.4 The Principal Properties of Ceramics 126 4.3 Silicate Glasses 126 4.


3.1 Bonding and Structure of Silicate Glasses 127 4.3.2 Glass Deformation 129 4.3.3 Strengthened Glass 131 4.3.4 Glass-Ceramics 132 4.


4 Polymers and Organic Materials 133 4.4.1 Polymers 133 4.4.2 Polymer Formation 134 4.4.3 Microstructures of Polymers 138 4.4.


4 Elastomers 143 4.4.5 Production of Polymers 145 4.4.6 Organic Framework Structures: MOFs and COFs 148 4.4.7 The Principal Properties of Polymers 151 4.5 Composite Materials 152 4.


5.1 Fibre-Reinforced Materials 152 4.5.2 Cement and Concrete 154 Reference 157 Further Reading 157 Metals 157 Bulk Metallic Glasses 157 Ceramics and Glass 157 Zeolites 157 Polymers 157 Metal-organic Frameworks 158 Covalent Organic Frameworks 158 Composites 158 Problems and Exercises 158 Calculations and Questions 160 Part II Reactions and Transformations 165 5 Diffusion and Ionic Conductivity 167 5.1 Self-Diffusion and Tracer Diffusion 167 5.2 Non-steady-state and Steady-State Diffusion 169 5.3 Temperature Variation of Diffusion Coefficient 171 5.4 The Effect of Impurities 171 5.


5 RandomWalk Diffusion 171 5.6 Diffusion in Solids 175 5.7 Self-Diffusion in One Dimension 176 5.8 Self-Diffusion in Crystals 178 5.9 The Arrhenius Equation and Point Defects 178 5.10 Correlation Factors for Self-Diffusion 180 5.11 Ionic Conductivity 181 5.12 The Relationship Between Ionic Conductivity and Diffusion Coefficient 183 5.


13 Superionic Conductors 184 5.13.1 Disordered Cation Compounds 184 5.13.2 β-Alumina Oxides 185 5.13.3 Stabilised Zirconia Oxides 188 5.13.


4 NASICON-Related Crystals 188 References 189 Further Reading 189 Superionic Conductors: See Also References Therein 190 Problems and Exercises 190 Calculations and Questions 191 6 Phase Transformations and Reactions 195 6.1 Sintering 195 6.1.1 Sintering and Reaction 195 6.1.2 The Driving Force for Sintering 197 6.1.3 The Kinetics of Neck Growth and Grain Growth 198 6.


1.4 Rapid Sintering 198 6.2 Phase Transitions 199 6.2.1 First-Order Phase Transitions 200 6.2.2 Second-Order Transitions 201 6.3 Displacive and Reconstructive Transitions 201 6.


3.1 Displacive Transitions 201 6.3.2 Reconstructive Transitions 203 6.4 Order-Disorder Transitions 204 6.4.1 Positional Ordering 205 6.4.


2 Orientational Ordering 205 6.5 Martensitic Transformations 206 6.5.1 The Austenite-Martensite Transition 207 6.5.2 Martensitic Transformations in Zirconia 210 6.5.3 Martensitic Transitions in Ni-Ti Alloys 211 6.


5.4 Shape-Memory Alloys 212 6.6 Phase Diagrams and Microstructures 214 6.6.1 Equilibrium Solidification of Simple Binary Alloys 214 6.6.2 Non-equilibrium Solidification and Coring 214 6.6.


3 Solidification in Systems Containing a Eutectic Point 216 6.6.4 Equilibrium Heat Treatment of Steel in the Fe-C Phase Diagram 218 6.7 High Temperature Oxidation of Metals 220 6.7.1 Direct Corrosion 220 6.7.2 The Rate of Oxidation 222 6.


7.3 Oxide Film Microstructure 222 6.7.4 Film Growth via Diffusion 223 6.7.5 Alloys 225 6.8 Solid-State Reactions 225 6.8.


1 Spinel Formation 225 6.8.2 Photoresists 227 6.8.3 Mechanochemistry 229 Further Reading 230 Sintering and 3D Printing 230 High Temperature Oxidation and Solid-State Reactions 230 For Mechanochemistry See 231 Problems and Exercises 231 Calculations and Questions 233 7 Oxidation and Reduction 239 7.1 Galvanic Cells 239 7.1.1 Cell Basics 239 7.


1.2 Standard Electrode Potentials 241 7.1.3 Cell Potential, Gibbs Energy, and Concentration Dependence 243 7.2 Chemical Analysis Using Galvanic Cells 243 7.2.1 pH Meters 243 7.2.


2 Ion Selective Electrodes 245 7.2.3 Oxygen Sensors 246 7.3 Batteries 247 7.3.1 Primary Batteries 248 7.3.1.


1 ''Dry'' and Alkaline Primary Batteries 248 7.3.1.2 Lithium-Ion Primary Batteries 249 7.3.1.3 Lithium-Air Batteries 249 7.3.


2 Fuel Cells 250 7.3.3 Secondary Batteries 252 7.3.3.1 The Lead-Acid Battery 252 7.3.3.


2 Lithium-Ion Batteries 253 7.3.3.3 Dual-Ion Batteries 254 7.4 Corrosion 255 7.4.1 The Reaction of Metals withWater and Aqueous Acids 256 7.4.


2 Dissimilar Metal Corrosion 257 7.4.3 Single Metal Electrochemical Corrosion 259 7.5 Electrolysis 260 7.5.1 Electrolytic Cells 260 7.5.2 Electroplating 261 7.


5.3 The Amount of Product Produced During Electrolysis 262 7.5.4 The Electrolytic Preparation of Titanium by the FFC Cambridge Process 263 7.6 Pourbaix Diagrams 264 7.6.1 Passivation, Corrosion, and Leaching 264 7.6.


2 The Stability Field ofWater 265 7.6.3 Pourbaix Diagrams for a Metal Showing Two Valence States 265 7.6.4 Pourbaix Diagram Displaying Tendency for Corrosion 268 Reference 268 Further Reading 269 For a General Introduction to Electrochemistry See 269 Structure-property.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...