Understanding Solids : The Science of Materials
Understanding Solids : The Science of Materials
Click to enlarge
Author(s): Tilley, Richard J. D.
ISBN No.: 9781118423462
Pages: 592
Year: 201305
Format: Trade Paper
Price: $ 114.47
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface to the Second Edition xvii Preface to the First Edition xix PART 1 STRUCTURES AND MICROSTRUCTURES 1 1 The electron structure of atoms 3 1.1 The hydrogen atom 3 1.1.1 The quantum mechanical description 3 1.1.2 The energy of the electron 4 1.1.3 Electron orbitals 5 1.


1.4 Orbital shapes 5 1.2 Many-electron atoms 7 1.2.1 The orbital approximation 7 1.2.2 Electron spin and electron configuration 7 1.2.


3 The periodic table 9 1.3 Atomic energy levels 11 1.3.1 Spectra and energy levels 11 1.3.2 Terms and term symbols 11 1.3.3 Levels 13 1.


3.4 Electronic energy level calculations 14 Further reading 15 Problems and exercises 16 2 Chemical bonding 19 2.1 Ionic bonding 19 2.1.1 Ions 19 2.1.2 Ionic size and shape 20 2.1.


3 Lattice energies 21 2.1.4 Atomistic simulation 23 2.2 Covalent bonding 24 2.2.1 Valence bond theory 24 2.2.2 Molecular orbital theory 30 2.


3 Metallic bonding and energy bands 35 2.3.1 Molecular orbitals and energy bands 36 2.3.2 The free electron gas 37 2.3.3 Energy bands 40 2.3.


4 Properties of metals 41 2.3.5 Bands in ionic and covalent solids 43 2.3.6 Computation of properties 44 Further reading 45 Problems and exercises 46 3 States of aggregation 49 3.1 Weak chemical bonds 49 3.2 Macrostructures, microstructures and nanostructures 52 3.2.


1 Structures and scale 52 3.2.2 Crystalline solids 52 3.2.3 Quasicrystals 53 3.2.4 Non-crystalline solids 54 3.2.


5 Partly crystalline solids 55 3.2.6 Nanoparticles and nanostructures 55 3.3 The development of microstructures 57 3.3.1 Solidification 58 3.3.2 Processing 58 3.


4 Point defects 60 3.4.1 Point defects in crystals of elements 60 3.4.2 Solid solutions 61 3.4.3 Schottky defects 62 3.4.


4 Frenkel defects 63 3.4.5 Non-stoichiometric compounds 64 3.4.6 Point defect notation 66 3.5 Linear, planar and volume defects 68 3.5.1 Edge dislocations 68 3.


5.2 Screw dislocations 69 3.5.3 Partial and mixed dislocations 69 3.5.4 Planar defects 69 3.5.5 Volume defects: precipitates 70 Further reading 73 Problems and exercises 73 4 Phase diagrams 77 4.


1 Phases and phase diagrams 77 4.1.1 One-component (unary) systems 77 4.1.2 The phase rule for one-component (unary) systems 79 4.2 Binary phase diagrams 80 4.2.1 Two-component (binary) systems 80 4.


2.2 The phase rule for two-component (binary) systems 81 4.2.3 Simple binary diagrams: nickel-copper as an example 81 4.2.4 Binary systems containing a eutectic point: tin-lead as an example 83 4.2.5 Intermediate phases and melting 87 4.


3 The iron-carbon system near to iron 88 4.3.1 The iron-carbon phase diagram 88 4.3.2 Steels and cast irons 89 4.3.3 Invariant points 89 4.4 Ternary systems 90 4.


5 Calculation of phase diagrams: CALPHAD 93 Further reading 94 Problems and exercises 94 5 Crystallography and crystal structures 101 5.1 Crystallography 101 5.1.1 Crystal lattices 101 5.1.2 Crystal systems and crystal structures 102 5.1.3 Symmetry and crystal classes 104 5.


1.4 Crystal planes and Miller indices 106 5.1.5 Hexagonal crystals and Miller-Bravais indices 109 5.1.6 Directions 110 5.1.7 Crystal geometry and the reciprocal lattice 112 5.


2 The determination of crystal structures 114 5.2.1 Single crystal X-ray diffraction 114 5.2.2 Powder X-ray diffraction and crystal identification 115 5.2.3 Neutron diffraction 118 5.2.


4 Electron diffraction 118 5.3 Crystal structures 118 5.3.1 Unit cells, atomic coordinates and nomenclature 118 5.3.2 The density of a crystal 119 5.3.3 The cubic close-packed (A1) structure 121 5.


3.4 The body-centred cubic (A2) structure 121 5.3.5 The hexagonal (A3) structure 122 5.3.6 The diamond (A4) structure 122 5.3.7 The graphite (A9) structure 123 5.


3.8 The halite (rock salt, sodium chloride, B1) structure 123 5.3.9 The spinel (H11) structure 125 5.4 Structural relationships 126 5.4.1 Sphere packing 126 5.4.


2 Ionic structures in terms of anion packing 128 5.4.3 Polyhedral representations 129 Further reading 131 Problems and exercises 131 PART 2 CLASSES OF MATERIALS 137 6 Metals, ceramics, polymers and composites 139 6.1 Metals 139 6.1.1 The crystal structures of pure metals 140 6.1.2 Metallic radii 141 6.


1.3 Alloy solid solutions 142 6.1.4 Metallic glasses 145 6.1.5 The principal properties of metals 146 6.2 Ceramics 147 6.2.


1 Bonding and structure of silicate ceramics 147 6.2.2 Some non-silicate ceramics 149 6.2.3 The preparation and processing of ceramics 152 6.2.4 The principal properties of ceramics 154 6.3 Silicate glasses 154 6.


3.1 Bonding and structure of silicate glasses 155 6.3.2 Glass deformation 157 6.3.3 Strengthened glass 159 6.3.4 Glass-ceramics 160 6.


4 Polymers 161 6.4.1 Polymer formation 162 6.4.2 Microstructures of polymers 165 6.4.3 Production of polymers 170 6.4.


4 Elastomers 173 6.4.5 The principal properties of polymers 175 6.5 Composite materials 177 6.5.1 Fibre-reinforced plastics 177 6.5.2 Metal-matrix composites 177 6.


5.3 Ceramic-matrix composites 178 6.5.4 Cement and concrete 178 Further reading 181 Problems and exercises 182 PART 3 REACTIONS AND TRANSFORMATIONS 189 7 Diffusion and ionic conductivity 191 7.1 Self-diffusion, tracer diffusion and tracer impurity diffusion 191 7.2 Non-steady-state diffusion 194 7.3 Steady-state diffusion 195 7.4 Temperature variation of diffusion coefficient 195 7.


5 The effect of impurities 196 7.6 Random walk diffusion 197 7.7 Diffusion in solids 198 7.8 Self-diffusion in one dimension 199 7.9 Self-diffusion in crystals 201 7.10 The Arrhenius equation and point defects 202 7.11 Correlation factors for self-diffusion 204 7.12 Ionic conductivity 205 7.


12.1 Ionic conductivity in solids 205 7.12.2 The relationship between ionic conductivity and diffusion coefficient 208 Further reading 209 Problems and exercises 209 8 Phase transformations and reactions 213 8.1 Sintering 213 8.1.1 Sintering and reaction 213 8.1.


2 The driving force for sintering 215 8.1.3 The kinetics of neck growth 216 8.2 First-order and second-order phase transitions 216 8.2.1 First-order phase transitions 217 8.2.2 Second-order transitions 217 8.


3 Displacive and reconstructive transitions 218 8.3.1 Displacive transitions 218 8.3.2 Reconstructive transitions 219 8.4 Order-disorder transitions 221 8.4.1 Positional ordering 221 8.


4.2 Orientational ordering 222 8.5 Martensitic transformations 223 8.5.1 The austenite-martensite transition 223 8.5.2 Martensitic transformations in zirconia 226 8.5.


3 Martensitic transitions in Ni-Ti alloys 227 8.5.4 Shape-memory alloys 228 8.6 Phase diagrams and microstructures 230 8.6.1 Equilibrium solidification of simple binary alloys 230 8.6.2 Non-equilibrium solidification and coring 230 8.


6.3 Solidification in systems containing a eutectic point 231 8.6.4 Equilibrium heat treatment of steel in the Fe-C phase diagram 233 8.7 High-temperature oxidation of metals 236 8.7.1 Direct corrosion 236 8.7.


2 The rate of oxidation 236 8.7.3 Oxide film microstructure 237 8.7.4 Film growth via diffusion 238 8.7.5 Alloys 239 8.8 Solid-state reactions 240 8.


8.1 Spinel formation 240 8.8.2 The kinetics of spinel formation 241 Further reading 242 Problems and exercises 242 9 Oxidation and reduction 247 9.1 Galvanic cells 247 9.1.1 Cell basics 247 9.1.


2 Standard electrode potentials 249 9.1.3 Cell potential and Gibbs energy 250 9.1.4 Concentration dependence 251 9.2 Chemical analysis using galvanic cells 251 9.2.1 pH meters 251 9.


2.2 Ion selective electrodes 253 9.2.3 Oxygen sensors 254 9.3 Batteries 255 9.3.1 ''Dry'' and alkaline primary batteries 255 9.3.


2 Lithium-ion primary batteries 256 9.3.3 The lead-acid secondary battery 257 9.3.4 Lithium-ion secondary batteries 257 9.3.5 Lithium-air batteries 259 9.3.


6 Fuel cells 260 9.4 Corrosion 262 9.4.1 The reaction of metals with water and aqueous acids 262 9.4.2 Dissimilar metal corrosion 264 9.4.3 Single metal electrochemical corrosion 265 9.


5 Electrolysis 266 9.5.1 Electrolytic cells 267 9.5.2 Electroplating 267 9.5.3 The amount of product produced during electrolysis 268 9.5.


4 The electrolytic preparation of titanium by the FFC Cambridge Process 269 9.6 Pourbaix diagrams 270 9.6.1 Passivation, corrosion and leaching 270 9.6.2 The stability field of water 270 9.6.3 Pourbaix diagram for a metal showing two valence states, M2þ and M3þ 271 9.


6.4 Pourbaix diagram displaying tendency for corrosion 273 Further reading 274 Problems and exercises 275 PART 4 PHYSICAL PROPERTI.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...