Synopsis.- One (I): Optimal Comparative Process for Rocket Engines.- 1. Description of the Problem.- 1.1 Introduction.- 1.2 NASA Comparative Processes.
- 2. Definition of an Ideal Comparative Process.- 2.1 Process Phenomenology in a Rocket Engine.- 2.2 Comparative Process for Relaxing Flows.- 3. Classical Gas Dynamics of the ICP.
- 3.1 Relaxing Model Gas as System.- 3.2 Flow Tube Theory with Conversion Processes.- 3.3 Sequence of States.- 4. Design Criteria for Rocket Engines.
- 4.1 Design Procedure.- 4.2 Influences of Real Flows.- 5. Summary I.- Two (II): Thermofluiddynamics of Rocket Propulsion.- 1.
Problems with the NASA-Methods.- 1.1 Intentions of the NASA-Lewis Code.- 1.2 AFC Method.- 1.3 FAC Method and Prozan's Procedure.- 1.
4 Evaluation of the NASA Methods.- 1.5 Matching Procedures.- 1.6 General Commentary.- 2. Basic Principles of the Alternative Theory.- 2.
1 Introduction and Reference to the Microphysical Fundamentals.- 2.2 Forms of Energy and Gibbs Fundamental Equation.- 2.3 Gibbs-Duhem Equation, Process and Realization.- 2.4 Axioms of the Traditional Continuum Theories: a Commentary.- 2.
5 Significant Results of the Alternative Theory: an Outline.- 3. The Munich Method.- 3.1 Preliminary Remarks.- 3.2 Changes of State in the Combustion Chamber.- 3.
3 Speed of Sound in Chemically-reacting Gas Mixtures.- 3.4 Stoichiometric Matrix of the LH-LOX Equilibrium Combustion.- 3.5 Nozzle Differential Equation; Mass Flow Eigenvalue.- 3.6 Nozzle Exit State: Problems of Numerical Computation.- 3.
7 Regenerative Cooling: Attempts towards a Modeling.- 4. Test of the MM with Data from LH-LOX Rocket Engines.- 4.1 Problems of Assessment.- 4.2 MM in Comparison with the Lewis Code and Test Data.- 4.
3 Variable Mixture Ratios and Reusability.- 4.4 Influence of the Operating Parameters on Flow States.- 5. Summary Part II.- List of Relevant Symbols.- Appendix 1: Thermodynamic Analysis of the Simplified Model Gas.- Appendix 2: Properties of State of Polynary Fluid Mixtures.
- Notes.- Index of Names.