1. Introduction to Magnetism.- 1.1. Magnetic Properties of Materials.- 1.1.1.
Diamagnetism.- 1.1.2. Paramagnetism.- 1.1.3.
Ferromagnetism.- 1.1.4. Ferrimagnetism and Antiferromagnetism.- 1.2. Spinning Top.
- 1.3. Magnetism.- 1.3.1. Equation of Motion.- 1.
3.2. Gyromagnetic Ratio.- 1.4. Magnetic Moments of Atoms and Ions.- 1.4.
1. Angular Momentum in Quantum Mechanics.- 1.4.2. Construction of Ground States of Atoms and Ions.- 1.5.
Elements Important to Magnetism.- Problems.- 2. Magnetic Susceptibilities.- 2.1. Diamagnetism.- 2.
2. Paramagnetism.- 2.3. Weiss Theory of Ferromagnetism.- 2.4. NĂ©el Theory of Ferrimagnetism.
- 2.5. Exchange Interaction.- 2.5.1. Uniform Magnetization.- 2.
5.2. Nonuniform Magnetization.- 2.6. Magnetocrystalline Anisotropy.- 2.6.
1. Uniaxial Anisotropy.- 2.6.2. Cubic Anisotropy.- 2.6.
3. Coordinate Transformations.- 2.7. Polder Susceptibility Tensor.- 2.7.1.
Equation of Motion for the Magnetization.- 2.7.2. Susceptibility Without Exchange or Anisotropy.- 2.7.3.
Susceptibility with Exchange and Anisotropy.- 2.8. Magnetic Damping.- Problems.- 3. Electromagnetic Waves in Anisotropic Dispersive Media.- 3.
1. Maxwell's Equations.- 3.2. Constitutive Relations.- 3.3. Instantaneous Poynting Theorem.
- 3.4. Complex Poynting Theorem.- 3.5. Energy Densities in Lossless Dispersive Media.- 3.6.
Wave Equations.- 3.7. Polarization of the Electromagnetic Fields.- 3.8. Group and Energy Velocities.- 3.
9. Plane Waves in a Magnetized Ferrite.- 3.9.1. Propagation Parallel to the Applied Field.- 3.9.
2. Propagation Perpendicular to the Applied Field.- 3.10. The Magnetostatic Approximation.- Problems.- 4. Magnetostatic Modes.
- 4.1. Walker's Equation.- 4.2. Spin Waves.- 4.3.
Uniform Precession Modes.- 4.3.1. Normally Magnetized Ferrite Film.- 4.3.2.
Tangentially Magnetized Ferrite Film.- 4.3.3. Ferrite Sphere.- 4.4. Normally Magnetized Film: Forward Volume Waves.
- 4.5. Tangentially Magnetized Film: Backward Volume Waves.- 4.6. Tangentially Magnetized Film: Surface Waves.- Problems.- 5.
Propagation Characteristics and Excitation of Magnetostatic Waves.- 5.1. Energy Velocities for Magnetostatic Waves.- 5.2. Propagation Loss.- 5.
2.1. Relaxation Time for Propagating Modes.- 5.2.2. Surface Waves.- 5.
2.3. Volume Waves.- 5.2.4. Summary of the Phenomenological Loss Theory.- 5.
3. Mode Orthogonality and Normalization.- 5.3.1. Forward Volume Waves.- 5.3.
2. Backward Volume Waves.- 5.3.3. Surface Waves.- 5.4.
Excitation of Magnetostatic Waves.- 5.4.1. Common Excitation Structures.- 5.4.2.
Forward Volume Waves.- 5.4.3. Backward Volume Waves.- 5.4.4.
Surface Waves.- 5.4.5. Discussion of Excitation Calculations.- Problems.- 6. Variational Formulation for Magnetostatic Modes.
- 6.1. General Problem Statement.- 6.2. Calculus of Variations.- 6.2.
1. Formulation for One Independent Variable.- 6.2.2. Extensions to Three Independent Variables.- 6.3.
Small-Signal Functional for Ferrites.- 6.4. Interpretation of the Functional.- 6.5. Stationary Formulas.- 6.
6. Stationary Formula Examples with Forward Volume Waves.- 6.6.1. Large k Limit.- 6.6.
2. Improved Approximation.- 6.6.3. Effect of Medium Inhomogeneity.- Problems.- 7.
Optical-Magnetostatic Wave Interactions.- 7.1. Symmetric Dielectric Waveguides.- 7.1.1. TE Modes.
- 7.1.2. TM Modes.- 7.1.3. Optical Mode Orthogonality and Normalization.
- 7.2. Magneto-Optical Interactions.- 7.2.1. Can You Tell the Difference Between$$\bar \mu$$ and $$\bar \varepsilon$$?.- 7.
2.2. Definition of Magnetization at High Frequencies.- 7.2.3. Symmetry Requirements on the Permittivity.- 7.
3. Coupled-Mode Theory.- 7.3.1. Coupled-Mode Equations.- 7.3.
2. Energy Conservation.- 7.3.3. Solutions to the Coupled-Mode Equations.- 7.4.
Scattering of Optical Guided Modes by Magnetostatic Waves.- 7.4.1. Coupled-Mode Equations.- 7.4.2.
Coupling Coefficients.- 7.4.3. Tightly Bound Optical Mode Approximation.- 7.5. Anisotropic Bragg Diffraction.
- Problems.- Appendix: Properties of Yttrium Iron Garnet.