How the World Really Works : The Science Behind How We Got Here and Where We're Going
How the World Really Works : The Science Behind How We Got Here and Where We're Going
Click to enlarge
Author(s): Smil, Vaclav
ISBN No.: 9780593297063
Pages: 336
Year: 202205
Format: Trade Cloth (Hard Cover)
Price: $ 41.40
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

1. Understanding Energy Fuels and Electricity Consider a benign science fiction scenario: not travel to distant planets in search of life, but the Earth and its inhabitants as targets of remote monitoring by an exceedingly sapient civilization that sends its probes to nearby galaxies. Why do they do this? Just for the satisfaction of systematic understanding, and perhaps also to avoid dangerous surprises should the third planet orbiting around an unremarkable star in a spiral galaxy become a threat, or perhaps in case they should require a second home. Hence this planet keeps periodic tabs on Earth. Let us imagine that a probe approaches our planet once every 100 years and that it is programmed to make a second pass (a closer inspection) only when it detects a previously unobserved kind of energy conversion-the changing of energy from one form to another-or a new physical manifestation dependent on it. In fundamental physical terms, any process-be it rain, a volcanic eruption, plant growth, animal predation, or the growth of human sapience-can be defined as a sequence of energy conversions, and for a few hundred million years after the Earth''s formation the probes would see only the same varied, but ultimately monotonous, displays of volcanic eruptions, earthquakes and atmospheric storms. Fundamental shifts The first microorganisms emerge nearly 4 billion years ago but passing probes do not register them, as these life forms are rare and remain hidden, associated with alkaline hydrothermal vents at the ocean''s floor. The first occasion for a closer look arises as early as 3.


5 billion years ago, when a passing probe records the first simple, single-celled photosynthetic microbes in shallow seas: they absorb near-infrared radiation-that which is just beyond the visible spectrum-and do not produce oxygen. Hundreds of millions of years then elapse with no signs of change before cyanobacteria begin to use the energy of the visible incoming solar radiation to convert CO2 and water into new organic compounds and release oxygen. This is a radical shift that will create Earth''s oxygenated atmosphere, yet a long time elapses before new, more complex aquatic organisms are seen 1.2 billion years ago, when the probes document the rise and diffusion of brilliantly colored red algae (due to the photosynthetic pigment phycoerythrin) and of much larger, brown algae. Green algae arrive nearly half a billion years later, and because of the new proliferation of marine plants the probes get better sensors to monitor the sea floor. This pays off, as more than 600 million years ago the probes make another epochal discovery: the existence of the first organisms made of differentiated cells. These flattish, soft, bottom-dwelling creatures (known as Ediacaran fauna after their Australian domicile) are the first simple animals requiring oxygen for their metabolism and, unlike algae that are merely tossed by waves and currents, they are mobile. And then the probes begin to document what are, comparatively speaking, rapid changes: instead of passing over lifeless continents and waiting hundreds of millions of years before logging another epochal shift, they begin to record the rising, cresting, and subsiding waves of the emergence, diffusion, and extinction of a huge variety of species.


This period starts with the Cambrian explosion of small marine bottom-dwellers (541 million years ago, dominated first by trilobites) through the arrival of the first fishes, amphibians, land plants, and four-legged (and hence exceptionally mobile) animals. Periodic extinctions reduce, or sometimes almost eliminate, this variety, and even just 6 million years ago the probes do not find any organism dominating the planet. Not long afterwards, the probes nearly miss the significance of a mechanical shift with enormous energetic implications: many four-legged animals briefly stand or awkwardly walk on two legs, and more than 4 million years ago this form of locomotion becomes the norm for small ape-like creatures that begin spending more time on land than in trees. Now the intervals between reporting something noteworthy to their home base shrink from hundreds of millions to mere hundreds of thousands of years. Eventually the descendants of these early bipeds (we classify them as hominins, belonging to the genus Homo, along the long line of our ancestors) do something that puts them on an accelerated path to planetary dominance. Several hundred thousand years ago, the probes detect the first extrasomatic use of energy-external to one''s body; that is, any energy conversion besides digesting food-when some of these upright walkers master fire and begin to use it deliberately for cooking, comfort, and safety. This controlled combustion converts the chemical energy of plants into thermal energy and light, enabling the hominins to eat previously hard-to-digest foods, warming them through the cold nights, and keeping away dangerous animals.These are the first steps toward deliberately shaping and controlling the environment on an unprecedented scale.


This trend intensifies with the next notable change, the adoption of crop cultivation. About 10 millennia ago, the probes record the first patches of deliberately cultivated plants as a small share of the Earth''s total photosynthesis becomes controlled and manipulated by humans who domesticate-select, plant, tend, and harvest-crops for their (delayed) benefit. The first domestication of animals soon follows. Before that happens, human muscles are the only prime movers-that is, converters of chemical (food) energy to the kinetic (mechanical) energy of labor. Domestication of working animals, starting with cattle some 9,000 years ago, supplies the first extrasomatic energy other than that of human muscles-they are used for field work, for lifting water from wells, for pulling or carrying loads, and for providing personal transportation. And much later come the first inanimate prime movers: sails, more than five millennia ago; waterwheels, more than two millennia ago; and windmills, more than a thousand years ago. Afterwards, the probes don''t have much to observe, following the arrival of another period of (relative) slowdown: century after century, there is just repetition, stagnation, or the slow growth and diffusion of these long-established conversions. In the Americas and in Australia (lacking any draft animals and any simple mechanical prime movers), all work before the arrival of Europeans is done by human muscles.


In some of the Old World''s preindustrial regions, harnessed animals, wind and running or falling water energize significant shares of grain milling, oil pressing, grinding, and forging, and draft animals become indispensable for heavy field work (plowing above all, as harvesting is still done manually), transporting goods, and waging wars. But at this point, even in societies with domesticated animals and mechanical prime movers, much of the work is still done by people. My estimate, using necessarily approximate past totals of working animals and people and assuming typical daily work rates based on modern measurements of physical exertion, is that-be it at the beginning of the second millennium of the Common Era or 500 years later (in 1500, at the beginning of the early modern era)-more than 90 percent of all useful mechanical energy was provided by animate power, roughly split between people and animals, while all thermal energy came from the combustion of plant fuels (mostly wood and charcoal, but also straw and dried dung). And then in 1600 the alien probe will spring into action, and spot something unprecedented. Rather than relying solely on wood, an island society is increasingly burning coal, a fuel produced by photosynthesis tens or hundreds of millions of years ago and fossilized by heat and pressure during its long underground storage. The best reconstructions show that coal as a heat source in England surpasses the use of biomass fuels around 1620 (perhaps even earlier); by 1650 the burning of fossil carbon supplies two-thirds of all heat; and the share reaches 75 percent by 1700. England has an exceptionally early start: all the coalfields that make the UK the world''s leading 19th-century economy are already producing coal before 1640. And then, at the very beginning of the 18th century, some English mines begin to rely on steam engines, the first inanimate prime movers powered by the combustion of fossil fuel.


These early engines are so inefficient that they can be deployed only in mines where the fuel supply is readily available and does not require any transportation.But for generations the UK remains the most interesting nation to the alien probe because it is an exceptional early adopter. Even by 1800, the combined coal extraction in a few European countries and the United States is a small fraction of British production. By 1800 a passing probe will record that, across the planet, plant fuels still supply more than 98 percent of all heat and light used by the dominant bipeds, and that human and animal muscles still provide more than 90 percent of all mechanical energy needed in farming, construction, and manufacturing. In the UK, where James Watt introduced an improved steam engine during the 1770s, the Boulton & Watt company begin to build engines whose average power is equal to that of 25 strong horses, but by 1800 they have sold less than 500 of these machines, merely denting the total power provided by harnessed horses and hard-working laborers. Even by 1850, rising coal extraction in Europe and North America supplies no more than 7 percent of all fuel energy.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...