Microgrid Technologies
Microgrid Technologies
Click to enlarge
Author(s): Sharmeela, C.
Sivaraman, P.
ISBN No.: 9781119710905
Pages: 560
Year: 202103
Format: E-Book
Price: $ 326.99
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Foreword xxi Acknowledgements xxiii 1 A Comprehensive Review on Energy Management in Micro-Grid System 1 Sanjay Kumar, R. K. Saket, P. Sanjeevikumar and Jens Bo Holm-Nielsen 1.1 Introduction 2 1.2 Generation and Storage System in MicroGrid 6 1.2.1 Distributed Generation of Electrical Power 6 1.


2.2 Incorporation of Electric Car in Micro-Grid as a Device for Backup 7 1.2.3 Power and Heat Integration in Management System 8 1.2.4 Combination of Heat and Electrical Power System 9 1.3 System of Energy Management 10 1.3.


1 Classification of MSE 10 1.3.1.1 MSE Based on Conventional Sources 10 1.3.1.2 MSE Based on SSE 10 1.3.


1.3 MSE Based on DSM 11 1.3.1.4 MSE Based on Hybrid System 11 1.3.2 Steps of MSE During Problem Solving 11 1.3.


2.1 Prediction of Uncertain Parameters 12 1.3.2.2 Uncertainty Modeling 12 1.3.2.3 Mathematical Formulation 12 1.


3.2.4 Optimization 13 1.3.3 Micro-Grid in Islanded Mode 13 1.3.3.1 Objective Functions and Constraints of System 13 1.


3.4 Micro-Grid Operation in Grid-Connected Mode 14 1.3.4.1 Objective Functions and Constraints of the Systems 14 1.4 Algorithms Used in Optimizing Energy Management System 16 1.5 Conclusion 19 References 20 2 Power and Energy Management in Microgrid 25 Jayesh J. Joglekar 2.


1 Introduction 25 2.2 Microgrid Structure 26 2.2.1 Selection of Source for DG 27 2.2.1.1 Phosphoric Acid Fuel Cell (PAFC) 27 2.2.


1.2 Mathematical Modeling of PAFC Fuel Cell 27 2.3 Power Flow Management in Microgrid 31 2.4 Generalized Unified Power Flow Controller (GUPFC) 33 2.4.1 Mathematical Modeling of GUPFC 34 2.5 Active GUPFC 38 2.5.


1 Active GUPFC Control System 39 2.5.1.1 Series Converter 40 2.5.1.2 Shunt Converter 42 2.5.


2 Simulation of Active GUPFC With General Test System 43 2.5.3 Simulation of Active GUPFC With IEEE 9 Bus Test System 43 2.5.3.1 Test Case: 1--Without GUPFC and Without Fuel Cell 45 2.5.3.


2 Test Case: 2--Without GUPFC and With Fuel Cell 47 2.5.3.3 Test Case: 3--With GUPFC and Without Fuel Cell 48 2.5.3.4 Test Case: 4--With GUPFC and With Fuel Cell 49 2.5.


3.5 Test Case: 5--With Active GUPFC 49 2.5.4 Summary 52 2.6 Appendix General Test System 53 2.6.1 IEEE 9 Bus Test System 53 References 55 3 Review of Energy Storage System for Microgrid 57 G.V.


Brahmendra Kumar and K. Palanisamy 3.1 Introduction 58 3.2 Detailed View of ESS 60 3.2.1 Configuration of ESS 60 3.2.2 Structure of ESS With Other Devices 60 3.


2.3 ESS Classifications 62 3.3 Types of ESS 62 3.3.1 Mechanical ESS 62 3.3.2 Flywheel ESS 63 3.3.


3 CAES System 64 3.3.4 PHS System 65 3.3.5 CES Systems 66 3.3.6 Hydrogen Energy Storage (HES) 67 3.3.


7 Battery-Based ESS 68 3.3.8 Electrical Energy Storage (EES) System 71 3.3.8.1 Capacitors 71 3.3.8.


2 Supercapacitors (SCs) 72 3.3.9 SMES 73 3.3.10 Thermal Energy Storage Systems (TESS) 74 3.3.10.1 SHS 75 3.


3.10.2 Latent 75 3.3.10.3 Absorption 75 3.3.10.


4 Hybrid ESS 76 3.4 Comparison of Current ESS on Large Scale 77 3.5 Importance of Storage in Modern Power Systems 77 3.5.1 Generation Balance and Fluctuation in Demand 77 3.5.2 Intermediate Penetration of Renewable Energy 77 3.5.


3 Use of the Grid 80 3.5.4 Operations on the Market 80 3.5.5 Flexibility in Scheduling 80 3.5.6 Peak Shaving Support 80 3.5.


7 Improve the Quality of Power 81 3.5.8 Carbon Emission Control 81 3.5.9 Improvement of Service Efficiency 81 3.5.10 Emergency Assistance and Support for Black Start 81 3.6 ESS Issues and Challenges 81 3.


6.1 Selection of Materials 82 3.6.2 ESS Size and Cost 82 3.6.3 Energy Management System 83 3.6.4 Impact on the Environment 83 3.


6.5 Issues of Safety 83 3.7 Conclusion 84 Acknowledgment 85 References 85 4 Single Phase Inverter Fuzzy Logic Phase Locked Loop 91 Maxwell Sibanyoni, S.P. Daniel Chowdhury and L.J. Ngoma 4.1 Introduction 91 4.


2 PLL Synchronization Techniques 92 4.2.1 T/4 Transport Delay PLL 95 4.2.2 Inverse Park Transform PLL 96 4.2.3 Enhanced PLL 97 4.2.


4 Second Order Generalized Integrator Orthogonal Signal Generator Synchronous Reference Frame (SOGI-OSG SRF) PLL 98 4.2.5 Cascaded Generalized Integrator PLL (CGI-PLL) 99 4.2.6 Cascaded Delayed Signal Cancellation PLL 100 4.3 Fuzzy Logic Control 101 4.4 Fuzzy Logic PLL Model 103 4.4.


1 Fuzzification 103 4.4.2 Inference Engine 105 4.4.3 Defuzzification 108 4.5 Simulation and Analysis of Results 110 4.5.1 Test Signal Generator 110 4.


5.2 Proposed SOGI FLC PLL Performance Under Fault Conditions 113 4.5.2.1 Test Case 1 113 4.5.2.2 Test Case 2 114 4.


5.2.3 Test Case 3 115 4.5.2.4 Test Case 4 115 4.5.2.


5 Test Case 5 116 4.5.2.6 Test Case 6 117 4.6 Conclusion 118 Acknowledgment 118 References 119 5 Power Electronics Interfaces in Microgrid Applications 121 Indrajit Sarkar 5.1 Introduction 122 5.2 Microgrid Classification 122 5.2.


1 AC Microgrid 122 5.2.2 DC Microgrids 124 5.2.3 Hybrid Microgrid 126 5.3 Role of Power Electronics in Microgrid Application 127 5.4 Power Converters 128 5.4.


1 DC/DC Converters 128 5.4.2 Non-Isolated DC/DC Converters 129 5.4.2.1 Maximum Power Point Tracking (MPPT) 130 5.4.3 Isolated DC/DC Converters 135 5.


4.4 AC to DC Converters 137 5.4.5 DC to AC Converters 139 5.5 Conclusion 143 References 143 6 Reconfigurable Battery Management System for Microgrid Application 145 Saravanan, S., Pandiyan, P., Chinnadurai, T., Ramji, Tiwari.


, Prabaharan, N., Senthil Kumar, R. and Lenin Pugalhanthi, P . 6.1 Introduction 146 6.2 Individual Cell Properties 147 6.2.1 Modeling of Cell 147 6.


2.1.1 Second Order Model 147 6.2.2 Simplified Non-Linear Model 148 6.3 State of Charge 149 6.4 State of Health 150 6.5 Battery Life 150 6.


6 Rate Discharge Eect 151 6.7 Recovery Eect 152 6.8 Conventional Methods and its Issues 152 6.8.1 Series Connected 152 6.8.2 Parallel Connected 154 6.9 Series-Parallel Connections 154 6.


10 Evolution of Battery Management System 155 6.10.1 Necessity for Reconfigurable BMS 156 6.10.2 Conventional R-BMS Methods 156 6.10.2.1 First Design 157 6.


10.2.2 Series Topology 158 6.10.2.3 Self X Topology 158 6.10.2.


4 Dependable Efficient Scalable Architecture Method 159 6.10.2.5 Genetic Algorithm-Based Method 160 6.10.2.6 Graph-Based Technique 161 6.10.


2.7 Power Tree-Based Technique 162 6.11 Modeling of Reconfigurable-BMS 163 6.12 Real Time Design Aspects 164 6.12.1 Sensing Module Stage 165 6.12.2 Control Module Stage 165 6.


12.2.1 Health Factor of Reconfiguration 166 6.12.2.2 Reconfiguration Time Delay and Transient Load Supply 166 6.12.3 Actuation Module 167 6.


12.3.1 Order of Switching 167 6.12.3.2 Stress and Faults of Switches 169 6.12.3.


3 Determining Number of Cells in a Module 170 6.13 Opportunities and Challenges 171 6.13.1 Modeling and Simulation 171 6.13.2 Hardware Design 171 6.13.3 Granularity 171 6.


13.4 Hardware Overhead 172 6.13.5 Intelligent Algorithms 172 6.13.6 Distributed Reconfigurable Battery Systems 172 6.14 Conclusion 173 References 173 7 Load Flow Analysis for Micro Grid 177 P. Sivaraman, Dr.


C. Sharmeela and Dr. S. Elango 7.1 Introduction 177 7.1.1 Islanded Mode of Operation 178 7.1.


2 Grid Connected Mode of Operation 178 7.2 Load Flow Analysis for Micro Grid 179 7.3 Example 179 7.3.1 Power Source 180 7.4 Energy Storage System 180 7.5 Connected Loads 182 7.6 Reactive Power Compensation 182 7.


7 Modeling and Simulation 182 7.7.1 Case 1 182 7.7.2 Case 2 184 7.7.3 Case 3 187 7.7.


4 Case 4 189 7.7.5 Case 5 191 7.8 Conclusion 193 References 195 8 AC Microgrid Protection Coordination 197 Ali M. Eltamaly, Yehia Sayed Mohamed, Abou-Hashema M. El-Sayed and Amer Nasr A. Elghaffar 8.1 Introduction 197 8.


2 Fault Analysis 200 8.2.1 Symmetrical Fault Analysis 201 8.2.2 Single Line to Ground Fault 202 8.2.3 Line-to-Line Fault 204 8.2.


4 Double Line-to-Ground Fault 206 8.3 Protection Coordination 208 8.3.1 Overcurrent Protection 209 8.3.2 Directional Overcurrent/Earth Fault Function 211 8.3.3 Distance Protection Function 214 8.


3.4 Distance Acceleration Scheme 217 8.3.5 Under/Over Voltage/Frequency Protection 219 8.4 Conclusion 221 Acknowledgment 224 References 224 9 A Numerical Approach for Estimating Emulated Inertia With Decentralized Frequency Control of Energy Storage Units for Hybrid Renewable Energy Microgrid System 227 Shubham Tiwari, Jai Govind Singh and Weerakorn Ongsakul 9.1 Introduction 228 9.2 Proposed Methodology 231 9.2.


1 Response in Conventional Grids 231 9.2.2 Strategy for Digital Inertia Emulation in Hybrid Renew.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...