DETAILED TABLE OF CONTENTSEach chapter begins with an Introduction and ends with a Summary and Problems.PrefacePART I: DEVICES AND BASIC CIRCUITS1. Introduction to Electronics1.1. Signals1.2. Frequency Spectrum of Signals1.3.
Analog and Digital Signals1.4. Amplifiers1.4.1. Signal Amplification1.4.2.
Amplifier Circuit Symbol1.4.3. Voltage Gain1.4.4. Power Gain and Current Gain1.4.
5. Expressing Gain in Decibels1.4.6. The Amplifier Power Supplies1.4.7. Amplifier Saturation1.
4.8. Nonlinear Transfer Characteristics and Biasing1.4.9. Symbol Convention1.5. Circuit Models for Amplifiers1.
5.1. Voltage Amplifiers1.5.2. Cascaded Amplifiers1.5.3.
Other Amplifier Types1.5.4. Relationships Between the Four Amplifier Models1.6. Frequency Response of Amplifiers1.6.1.
Measuring the Amplifier Frequency Response1.6.2. Amplifier Bandwidth1.6.3. Evaluating the Frequency Response of Amplifiers1.6.
4. Single-Time-Constant Networks1.6.5. Classification of Amplifiers Based on Frequency Response1.7. Digital Logic Inverters1.7.
1. Function of the Inverter1.7.2. The Voltage Transfer Characteristic (VTC)1.7.3. Noise Margins1.
7.4. The Ideal VTC1.7.5. Inverter Implementation1.7.6.
Power Dissipation1.7.7. Propagation Delay1.8. Circuit Simulation Using SPICE2. Operational Amplifiers2.1.
The Ideal Op Amp2.1.1. The Op-Amp Terminals2.1.2. Function and Characteristics of the Ideal Op Amp2.1.
3. Differential and Common-Mode Signals2.2. The Inverting Configuration2.2.1. The Closed-Loop Gain2.2.
2. Effect of Finite Open-Loop Gain2.2.3. Input and Output Resistances2.2.4. An Important Application--The Weighted Summer2.
3. The Noninverting Configuration2.3.1. The Closed-Loop Gain2.3.2. Characteristics of the Noninverting Configuration2.
3.3. Effect of Finite Open-Loop Gain2.3.4. The Voltage Follower2.4. Difference Amplifiers2.
4.1. A Single Op-Amp Difference Amplifier2.4.2. A Superior Circuit--The Instrumentation Amplifier2.5. Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance2.
5.1. Frequency Dependence of the Open-Loop Gain2.5.2. Frequency Response of Closed-Loop Amplifiers2.6. Large-Signal Operation of Op Amps2.
6.1. Output Voltage Saturation2.6.2. Output Current Limits2.6.3.
Slew Rate2.6.4. Full-Power Bandwidth2.7. DC Imperfections2.7.1.
Offset Voltage2.7.2. Input Bias and Offset Currents2.8. Integrators and Differentiators2.8.1.
The Inverting Configuration with General Impedances2.8.2. The Inverting Integrator2.8.3. The Op-Amp Differentiator2.9.
The SPICE Op-Amp Model and Simulation Examples2.9.1. Linear Macromodel2.9.2. Nonlinear Macromodel3. Diodes3.
1. The Ideal Diode3.1.1. Current-Voltage Characteristic3.1.2. A Simple Application: The Rectifier3.
1.3. Another Application: Diode Logic Gates3.2. Terminal Characteristics of Junction Diodes3.2.1. The Forward-Bias Region3.
2.2. The Reverse-Bias Region3.2.3. The Breakdown Region3.3. Modeling the Diode Forward Characteristic3.
3.1. The Exponential Model3.3.2. Graphical Analysis Using the Exponential Model3.3.3.
Iterative Analysis Using the Exponential Model3.3.4. The Need for Rapid Analysis3.3.5. The Piecewise-Linear Model3.3.
6. The Constant-Voltage-Drop Model3.3.7. The Ideal-Diode Model3.3.8. The Small-Signal Model3.
3.9. Use of the Diode Forward Drop in Voltage Regulation3.3.10. Summary3.4. Operation in the Reverse Breakdown Region--Zener Diodes3.
4.1. Specifying and Modeling the Zener Diode3.4.2. Use of the Zener as a Shunt Regulator3.4.3.
Temperature Effects3.4.4. A Final Remark3.5. Rectifier Circuits3.5.1.
The Half-Wave Rectifier3.5.2. The Full-Wave Rectifier3.5.3. The Bridge Rectifier3.5.
4. The Rectifier with a Filter Capacitor--The Peak Rectifier3.5.5. Precision Half-Wave Rectifier--The Super Diode3.6. Limiting and Clamping Circuits3.6.
1. Limiter Circuits3.6.2. The Clamped Capacitor or DC Restorer3.6.3. The Voltage Doubler3.
7. Physical Operation of Diodes3.7.1. Basic Semiconductor Concepts3.7.2. The pn Junction Under Open-Circuit Conditions3.
7.3. The pn Junction Under Reverse-Bias Conditions3.7.4. The pn Junction in the Breakdown Region3.7.5.
The pn Junction Under Forward-Bias Conditions3.7.6. Summary3.8. Special Diode Types3.8.1.
The Schottky-Barrier Diode (SBD)3.8.2. Varactors3.8.3. Photodiodes3.8.
4. Light-Emitting Diodes (LEDs)3.9. The SPICE Diode Model and Simulation Examples3.9.1. The Diode Model3.9.
2. The Zener Diode Model4. MOS Field-Effect Transistors (MOSFETs)4.1. Device Structure and Physical Operation4.1.1. Device Structure4.
1.2. Operation with No Gate Voltage4.1.3. Creating a Channel for Current Flow4.1.4.
Applying a Small vDS4.1.5. Operation as vDS Is Increased4.1.6. Derivation of the iD -vDS Relationship4.1.
7. The p-Channel MOSFET4.1.8. Complementary MOS or CMOS4.1.9. Operating the MOS Transistor in the Subthreshold Region4.
2. Current-Voltage Characteristics4.2.1. Circuit Symbol4.2.2. The iD -vDS Characteristics4.
2.3. Finite Output Resistance in Saturation4.2.4. Characteristics of the p-Channel MOSFET4.2.5.
The Role of the Substrate--The Body Effect4.2.6. Temperature Effects4.2.7. Breakdown and Input Protection4.2.
8. Summary4.3. MOSFET Circuits at DC4.4. The MOSFET as an Amplifier and as a Switch4.4.1.
Large-Signal Operation--The Transfer Characteristic4.4.2. Graphical Derivation of the Transfer Characteristic4.4.3. Operation as a Switch4.4.
4. Operation as a Linear Amplifier4.4.5. Analytical Expressions for the Transfer Characteristic4.4.6. A Final Remark on Biasing4.
5. Biasing in MOS Amplifier Circuits4.5.1. Biasing by Fixing VGS4.5.2. Biasing by Fixing VG and Connecting a Resistance in the Source4.
5.3. Biasing Using a Drain-to-Gate Feedback Resistor4.5.4. Biasing Using a Constant-Current Source4.5.5.
A Final Remark4.6. Small-Signal Operation and Models4.6.1. The DC Bias Point4.6.2.
The Signal Current in the Drain Terminal4.6.3. The Voltage Gain4.6.4. Separating the DC Analysis and the Signal Analysis4.6.
5. Small-Signal Equivalent-Circuit Models4.6.6. The Transconductance gm4.6.7. The T Equivalent-Circuit Model4.
6.8. Modeling the Body Effect4.6.9. Summary4.7.1.
The Basic Structure4.7.2. Characterizing Amplifiers4.7.3. The Common-Source (CS) Amplifier4.7.
4. The Common-Source Amplifier with a Source Resistance4.7.5. The Common-Gate (CG) Amplifier4.7.6. The Common-Drain or Source-Follower Amplifier4.
7.7. Summary and Comparisons4.8. The MOSFET Internal Capacitances and High-Frequency Model4.8.1. The Gate Capacitive Effect4.
8.2. The Junction Capacitances4.8.3. The High-Frequency MOSFET Model4.8.4.
The MOSFET Unity-Gain Frequency ( fT )4.8.5. Summary4.9. Frequency Response of the CS Amplifier4.9.1.
The Three Frequency Bands4.9.2. The High-Frequency Response4.9.3. The Low-Frequency Response4.9.
4. A Final Remark4.10. The CMOS Digital Logic Inverter4.10.1. Circuit Operation4.10.
2. The Voltage Transfer Characteristic4.10.3. Dynamic Operation4.10.4. Current Flow and Power Dissipation4.
10.5. Summary4.11. The Depletion-Type MOSFET4.12. The SPICE MOSFET Model and Simulation Example4.12.
1. MOSFET Models4.12.2. MOSFET Model Parameters5. Bipolar Junction Transistors (BJTs)5.1. Device Structure and Physical Operation5.
1.1. Simplified Structure and Modes of Operation 3785.1.2. Operation of the npn Transistor in the Active Mode5.1.3.
Structure of Actual Transistors5.1.4. The Ebers-Moll (EM) Model5.1.5. Operation in the Saturation Mode5.1.
6. The pnp Transistor5.2. Current-Voltage Characteristics5.2.1. Circuit Symbols and Conventions5.2.
2. Graphical Representation of Transistor Characteristics5.2.3. Dependence of iC on the Collector Voltage--The Early Effect5.2.4. The Common-Emitter Characteristics5.
2.5. Transistor Breakdown5.2.6. Summary5.3. The BJT as an Amplifier and as a Switch5.
3.1. Large-Signal Operation--The Transfer Characteristic5.3.2. Amplifier Gain5.3.3.
Graphical Analysis5.3.4. Operation as a Switch5.4. BJT Circuits at DC5.5. Biasing in BJT Amplifier Circuits5.
5.1. The Classical Discrete-Circuit Bias Arrangement5.5.2. A Two-Power-Supply Version of the Classical Bias Arrangement5.5.3.
Biasing Using a Collector-to-Base Feedback Resistor5.5.4. Biasing Using a Constant-Current Source5.6. Small-Signal Operation and Models5.6.1.
The Collector Current and the Transconductance5.6.2. The Base Current and the Input Resistance at the Base5.6.3. The Emitter Current and the Input Resistance at the Emitter5.6.
4. Voltage Gain5.6.5. Separating the Signal and the DC Quantities5.6.6. The Hybrid-p Model5.
6.7. The T Model5.6.8. Application of the Small-Signal Equivalent Circuits5.6.9.
Performing Small-Signal Analysis Directly on the Circuit Diagram5.6.10. Augmenting the Small-Signal Models to Account for the Early Effect5.6.11. Summary5.7.
Single-Stage BJT Amplifiers5.7.1. The Basic Structure5.7.2. Characterizing BJT Amplifiers5.7.
3. The Common-Emitter (CE) Amplifier5.7.4. The Common-Emitter Amplifier with an Emitter Resistance5.7.5. The Common-Base (CB) Amplifier5.
7.6. The Common-Collector (CC) Amplifier or Emitter Follower5.7.7. Summary and Comparisons5.8. The BJT Internal Capacitances and High-Frequency Model5.
8.1. The Base-Charging or Diffusion Capacitance Cde5.8.2. The Base-Emitter Junction Capacitance Cje5.8.3.
The Collector-Base Junction Capacitance Cµ5.8.4. The High-Frequency Hybrid-p Model5.8.5. The Cutoff Frequency5.8.
6. Summary5.9. Frequency Response of the Common-Emitter Amplifier5.9.1. The Three Frequency Bands5.9.
2. The High-Frequency Response5.9.3. The Low-Frequency Response5.9.4. A Final Remark5.
10. The Basic BJT Digital Logic Inverter5.10.1. The Voltage Transfer Characteristic5.10.2. Saturated Versus Nonsaturated BJT Digital Circuits5.
11. The SPICE BJT Model and Simulation Examples5.11.1. The SPICE Ebers-Moll Model of the BJT5.11.2. The SPICE Gummel-Poon Model of the BJT5.
11.3. The SPICE BJT Model Parameters5.11.4. The BJT Model Parameter.