1 Scheduling: Setting the Seen.- 1.1 Introduction.- 1.2 Problem Overview.- 1.3 Definitions.- 1.
4 Task Precedence Relationships.- 1.5 NP-Completeness and Scheduling.- 1.6 Scope of this Work.- 2 Parallel Computing: Experimental Platform.- 2.1 Introduction.
- 2.2 Parallel Computers.- 2.3 Transputer-Based Systems.- 2.4 Software Tools for the Transputer.- 2.5 Famts.
- 2.6 Summary.- 3 Task Scheduling: Highlights and Framework.- 3.1 List Scheduling Heuristics.- 3.2 Heuristic Clustering Algorithms.- 3.
3 Graph Theoretic Approaches.- 3.4 Queuing Theory.- 3.5 A Framework for Experiments.- 3.6 Case Study.- 3.
7 Parallel Implementation.- 3.8 Summary.- 4 Static Scheduling: Mean-Field Annealing.- 4.1 Neural Networks.- 4.2 An Overview of Mean-Field Annealing.
- 4.3 The Graph Partitioning Problem.- 4.4 Minimum Interprocessor Communication.- 4.5 MFA Model for Minimum Interprocessor Communication.- 4.6 Implementation Strategy.
- 4.7 Case Study: A Fully-Connected Network.- 4.8 Different Network Topologies.- 4.9 Summary.- 5 Dynamic Scheduling: A Fuzzy Logic Approach.- 5.
1 Fuzzy Logic.- 5.2 Dynamic Scheduling.- 5.3 A Fuzzy Model for Dynamic Task Allocation.- 5.4 Fuzzy Dynamic Scheduling.- 5.
5 Implementation.- 5.6 Summary.- 6 Single-Row Routing: Another Computationally-Intractable Problem.- 6.1 Introduction.- 6.2 Solving the SRR Problem.
- 6.3 Existing Methods.- 6.4 Simulated Annealing.- 6.5 Comparisons.- 6.6 Summary.
- 7 Epilogue.- 7.1 Summary of Findings.- 7.2 Open Issues.- Appendix A: Graph Multipartitioning Using Mean-Field Annealing.- Appendix B: General List Heuristic (Gl).- Appendix C: Single Row Routing (TARNG et al.
1984).- Appendix D: Single Row Routing (DU and LIU 1984).- References.