Organic and Molecular Electronics : From Principles to Practice
Organic and Molecular Electronics : From Principles to Practice
Click to enlarge
Author(s): Petty, Michael C.
ISBN No.: 9781118879283
Pages: 512
Year: 201901
Format: Trade Paper
Price: $ 151.73
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface Acknowledgements Symbols and Abbreviations About the companion website Chapter 1: Scope of Organic and Molecular Electronics 1. Introduction (2 Figs) 1.2. Organic Materials for Electronics 1.3. Molecular Electronics 1.3.1.


Evolution of Microelectronics (1 Fig & 1 Tab) 1.3.2. Moore''s Laws (2 Figs) 1.3.3. Beyond Moore (1 Fig & 2 Tabs) 1.4.


The Biological World 1.5. Future Opportunities (1 Fig) 1.6. Conclusions Problems Further Reading References Chapter 2: Materials'' Foundations 2.1. Introduction 2.2.


Electronic Structure 2.2.1. Atomic Structure 2.2.2. Electrons in Atoms (3 Figs & 3 Tabs) 2.2.


3. Filling of Orbitals 2.2.4. The Periodic Table (2 Figs) 2.3. Chemical Bonding 2.3.


1. Bonding Principles (1 Fig) 2.3.2. Ionic Bond (2 Figs) 2.3.3. Covalent Bond (4 Figs) 2.


3.4. Metallic Bonding (1 Fig.) 2.3.5. Van der Waals Bonding (1 Fig.) 2.


3.6. Hydrogen Bonding (1 Fig. & 1 Tab) 2.4. Bonding in Organic Compounds 2.4.1.


Hybridized Orbitals (3 Figs) 2.4.2. Isomers (6 Figs) Conformational Isomers Configurational Isomers 2.4.3. Double and Triple Bonds (6 Figs & 1 Tab) 2.5.


Crystalline and Noncrystalline Materials 2.5.1. States of Matter (1 Fig) 2.5.2. Phase Changes and Thermodynamic Equilibrium 2.5.


3. Crystal Lattice (1 Fig.) 2.5.4. Crystal Systems (1 Fig) 2.5.5.


Miller Indices (2 Figs) 2.5.6. Distance between Crystal Planes 2.5.7. Defects Point Defects (2 Figs) Line Defects (1 Fig) Plane Defects (1 Fig) Surfaces (1 Fig) 2.5.


8. Amorphous Solids (1 Fig) 2.6. Polymers (5 Figs & 1 Tab) 2.6.1. Molecular Weight 2.6.


2. Polymer Structure 2.6.3. Polymer Crystallinity 2.7. Soft Matter: Emusions: Foams And Gels 2.8.


Diffusion Problems Further Reading References Chapter 3: Electrical Conductivity 3.1. Introduction 3.2. Classical Theory (1 Fig) 3.2.1. Electrical Conductivity (2 Figs) 3.


2.2. Ohm''s Law 3.2.3. Charge Carrier Mobility 3.2.4.


Fermi Energy (2 Figs) 3.3. Energy Bands In Solids 3.3.1. Quantum Mechanical Foundations (7 Figs) Electromagnetic Waves Photons as Particles Electron Wavefunction Schrödinger Wave Equation Heisenberg''s Uncertainty Principle Quantum Mechanical Tunnelling 3.3.2.


Kronig-Penney Model (5 Figs) 3.3.3. Conductors, Semiconductors and Insulators (1 Fig) 3.3.4. Electrons and Holes (1 Fig) 3.3.


5. Intrinsic and Extrinsic Conduction n-Type Doping (1 Fig) p-Type Doping (1 Fig) Traps and Recombination Centres Fermi Level Position (2 Figs) 3.3.6. Quantum Wells (1 Fig) 3.3.7. Disordered Semiconductors (1 Fig) 3.


3.8. Conductivity in Low-dimensional Solids (1 Fig) 3.4. Organic Compounds 3.4.1. Band Structure Molecular Crystals (2 Figs) Polymers Peierls Distortion (3 Figs, 1 Tab) Charge-Transfer Complexes (3 Figs) 3.


4.2. Doping (3 Figs) 3.4.3. Solitons, Polarons and Bipolarons Solitons (3 Figs) Polarons and Bipolarons (1 Fig) 3.4.4.


Superconductivity (1 Fig) 3.5. Low-Frequency Conduction 3.5.1. Electronic Versus Ionic Conductivity 3.5.2.


Quantum Mechanical Tunnelling (2 Figs) 3.5.3. Variable Range Hopping 3.5.4. Fluctuation-Induced Tunnelling (1 Fig) 3.5.


5. Space-Charge Injection (2 Figs) 3.5.6. Schottky and Poole-Frenkel Effects (1 Fig) 3.6. Conductivity at High Frequencies 3.6.


1. Complex Permittivity (3 Figs) 3.6.2. Impedance Spectroscopy (2 Figs) Problems Further Reading References Chapter 4: Optical Phenomena 4.1. Introduction 4.2.


Electromagnetic Radiation 4.3. Refractive Index 4.3.1. Permittivity Tensor (2 Figs) 4.3.2.


Linear and Nonlinear Optics (2 Figs) 4.4. Interaction of Em Waves With Organic Molecules 4.4.1. Absorption Processes (4 Figs) 4.4.2.


Aggregate Formation (2 Figs) 4.4.3. Excitons (1 Fig) 4.4.4. Effect of Electric Field on Absorption 4.4.


5. Emission Processes (5 Figs) 4.4.6. Energy Transfer (2 Figs) 4.5. Transmission and Reflection from Interfaces 4.5.


1. Laws of Reflection and Refraction (1 Fig) 4.5.2. Fresnel Equations (1 Fig) 4.5.3. Ellipsometry 4.


5.4. Thin Films (2 Figs) 4.5.5. Transmission through Conductive Thin Films (1 Fig) 4.6. Waveguiding (3 Figs) 4.


7. Surface Plasmons 4.7.1. The Evanescent Field (2 Figs) 4.7.2. Surface Plasmon Resonance (6 Figs) 4.


8. Photonic Crystals (2 Figs) 4.8.1. Subwavelength Optics (2 Figs) Problems Further Reading References Chapter 5: Electroactive Organic Compounds 5.1. Introduction 5.2.


Selected Topics in Chemistry 5.2.1. Moles and Molecules 5.2.2. Acids and Bases 5.2.


3. Ions (1 Fig) 5.2.4. Solvents (1 Tab) 5.2.5. Functional Groups (1 Tab) 5.


2.6. Aromatic Compounds (2 Tabs) 5.2.7. Material Purity 5.3. Conductive Polymers (5 Figs) 5.


4. Charge-Transfer Complexes (3 Figs) 5.5. Graphene, Fullerenes and Nanotubes 5.5.1. Graphene (1 Fig) 5.5.


2. Fullerenes (3 Figs) 5.5.3. Carbon Nanotubes (3 Figs) 5.6. Piezoelectricity, Pyroelectricity and Ferrolectricity 5.6.


1. Basic Principles (3 Figs) 5.6.2. Organic Piezoelectric, Pyroelectric and Ferroelectric Compounds (1 Fig, 2 Tabs) 5.7. Magnetic Materials 5.7.


1. Basic Principles (6 Figs, 2 Tabs) Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism Ferrimagnetism 5.7.2. Organic Magnets (1 Fig) Problems Further reading References Chapter 6: Tools for Molecular Electronics 6.1. Introduction 6.2.


Direct Imaging 6.2.1. Optical Microscopy (2 Figs) 6.2.2. Electron Microscopy (3 Figs) 6.3.


X-RAY Reflection (3 Figs) 6.3.1. Electron Density Profile 6.3.2. Keissig Fringes (1 Fig) 6.3.


3. In-plane Measurements 6.4. Neutron Reflection 6.5. Electron Diffraction (3 Figs) 6.6. Infrared Spectroscopy (5 Figs; 1 Table) 6.


6.1. Raman Scattering (1 Fig) 6.7. Surface Analytical Techniques (1 Fig; 1 Table) 6.8. Scanning Probe Microscopies (3 Figs) 6.9.


Film Thickness Measurements (1 Fig; 1 Table) Problems Further Reading References Chapter 7: Thin Film Processing and Device Fabrication 7.1. Introduction 7.2. Established Deposition Methods 7.2.1. Spin-Coating (1 Fig) 7.


2.2. Physical Vapour Deposition Thermal Evaporation (6 Figs) Molecular Beam Epitaxy (1 Fig) Sputtering (1 Fig) 7.2.3. Chemical Vapour Deposition 7.2.4.


Electrochemical Methods 7.2.5. Inkjet Printing (5 Figs) 7.2.6. Spray Coating (1 Fig) 7.2.


7. Sol-Gel Processing (1 Fig) 7.2.8. Other Techniques 7.3. Molecular Architectures 7.3.


1. Langmuir-Blodgett Technique (12 Figs) 7.3.2. Chemical Self-Assembly (2 Figs) 7.3.3. Electrostatic Layer-by-Layer Deposition (5 Figs) 7.


4. Micro and Nanofabrication 7.4.1. Photolithography (1 Fig) 7.4.2. Nanometre Pattern Definition (1 Fig) 7.


4.3. Nanoimprint Lithography (1 Figs) 7.4.4. Scanning Probe Manipulation (3 Fig) 7.4.5.


Dip-Pen Nanolithography (1 Fig) 7.4.6. Gravure Printing (1 Fig) 7.4.7. Other Methods Problems Further Reading References Chapter 8: Liquid Crystals and Devices 8.1.


Introduction (1 Fig) 8.2. Liquid Crystal Phases 8.2.1. Thermotropic Liquid Crystals (1 Fig) Nematic Phases (2 Figs) Smectic Phases (2 Figs) Chiral Phases (2 Figs) Discotic Phases (2 Figs) 8.2.2.


Lyotropic Liquid Crystals (1 Fig) 8.3. Liquid Crystal Polymers (2 Figs) 8.4. Display Devices 8.4.1. Birefringence (1 Fig) 8.


4.2. Freedericksz Transition (2 Figs) 8.4.3. Twisted Nematic Display (2 Figs) 8.4.4.


Passive and Active Addressing (1 Fig) 8.4.5. Full-Colour Displays 8.4.6. Super-Twisted Nematic Display (1 Fig) 8.5.


Ferroelectric Liquid Crystals (2 Figs) 8.6. Polymer-Dispersed Liquid Crystals (2 Figs) 8.7. Liquid Crystal Lenses (2 Figs) 8.8. Other Application Areas (1 Fig) Problems Further Reading References Chapter 9: Plastic Electronics 9.1.


Introduction 9.2. Organic Diodes 9.2.1. Schottky Diode (4 Figs) 9.2.2.


Ohmic Contacts 9.3. Metal-Insulator-Semiconductor Structures 9.3.1. Idealized MIS Devices (2 Figs) 9.3.2.


Effect of Real Surfaces 9.3.3. Organic MIS Structures (1 Fig) 9.4. Organic Field Effect Transistors (7 Figs) 9.5. Organic Integrated Circuits (1 Fig) 9.


5.1. Radiofrequency Identification Tags (2 Figs) 9.6. Transparent Conducting Films 9.7. Organic Light-Emitting Devices (4 Figs) 9.7.


1. Device Efficiency (2 Tables) 9.7.2. Device Architectures (1 Figs) Electrodes Hole and Electron Transport Layers (2 Fig) Triplet Emission (1 Fig) Blended Layer and Hybrid Molecular Structures (1 Fig) 9.7.3. Increasing the Light Output Efficiency Losses (1 Fig) Microlenses and Shaped Substrates (1 Figs) Microca.



To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...