Advances in Data Science and Analytics : Concepts and Paradigms
Advances in Data Science and Analytics : Concepts and Paradigms
Click to enlarge
Author(s): Gianey, Hemant Kumar
Niranjanamurthy, M.
ISBN No.: 9781119791881
Pages: 352
Year: 202211
Format: Trade Cloth (Hard Cover)
Price: $ 269.10
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xv 1 Implementation Tools for Generating Statistical Consequence Using Data Visualization Techniques 1 Dr. Ajay B. Gadicha, Dr. Vijay B. Gadicha, Prof. Sneha Bohra and Dr. Niranjanamurthy M. 1.


1 Introduction 2 1.2 Literature Review 4 1.3 Tools in Data Visualization 4 1.4 Methodology 14 1.4.1 Plotting the Data 14 1.4.2 Plotting the Model on Data 15 1.


4.3 Quantifying Linear Relationships 16 1.4.4 Covariance vs. Correlation 17 1.5 Conclusion 18 References 18 2 Decision Making and Predictive Analysis for Real Time Data 21 Umesh Pratap Singh 2.1 Introduction 22 2.2 Data Analytics 23 2.


2.1 Descriptive Analytics 23 2.2.2 Diagnostic Analytics 23 2.2.3 Predictive Analytics 23 2.2.4 Prescriptive Analytics 24 2.


3 Predictive Modeling 24 2.4 Categories of Predictive Models 24 2.5 Process of Predictive Modeling 25 2.5.1 Requirement Gathering 26 2.5.2 Data Gathering 26 2.5.


3 Data Analysis and Massaging 26 2.5.4 Machine Learning Statistics 26 2.5.5 Predictive Modeling 26 2.5.6 Prediction and Decision Making 27 2.6 Predictive Analytics Opportunities 27 2.


6.1 Detecting Fraud 27 2.6.2 Reduction of Risk 27 2.6.3 Marketing Campaign Optimization 28 2.6.4 Operation Improvement 28 2.


6.5 Clinical Decision Support System 28 2.7 Classification of Predictive Analytics Models 28 2.7.1 Predictive Models 28 2.7.2 Descriptive Models 29 2.7.


3 Decision Models 29 2.8 Predictive Analytics Techniques 29 2.8.1 Predictive Analytics Software 29 2.8.2 The Importance of Good Data 30 2.8.3 Predictive Analytics vs.


Business Intelligence 30 2.8.4 Pricing Information 30 2.9 Data Analysis Tools 30 2.9.1 Excel 30 2.9.2 Tableau 31 2.


9.3 Power BI 31 2.9.4 Fine Report 31 2.9.5 R & Python 31 2.10 Advantages & Disadvantages of Predictive Modeling 31 2.10.


1 Advantages 31 2.10.2 Disadvantages 32 2.10.2.1 Data Labeling 32 2.10.2.


2 Obtaining Massive Training Datasets 32 2.10.2.3 The Explainability Problem 32 2.10.2.4 Generalizability of Learning 33 2.10.


2.5 Bias in Algorithms and Data 33 2.11 Predictive Analytics Biggest Impact 33 2.11.1 Predicting Demand 33 2.11.2 Transformation Using Technology and Process 34 2.11.


3 Improved Pricing 34 2.11.4 Predictive Maintenance 35 2.12 Application of Predictive Analytics 35 2.12.1 Financial and Banking Services 35 2.12.2 Retail 35 2.


12.3 Health and Insurance 36 2.12.4 Oil and Gas Utilities 36 2.12.5 Public Sector 36 2.13 Future Scope of Predictive Modeling 36 2.13.


1 Technological Advancements 37 2.13.2 Changes in Work 37 2.13.3 Risk Mitigation 37 2.14 Conclusion 37 References 38 3 Optimizing Water Quality with Data Analytics and Machine Learning 39 Bin Liang, Zhidong Li, Hongda Tian, Shuming Liang, Yang Wang and Fang Chen 3.1 Introduction 39 3.2 Related Work 41 3.


3 Data Sources and Collection 42 3.4 Water Demand Forecasting 43 3.4.1 Network Flow and Zone Demand Estimation 43 3.4.2 Demand Forecasting 44 3.4.2.


1 Feature Importance 45 3.4.2.2 Forecast Horizon 46 3.4.3 Performance Characterization 46 3.5 Re-Chlorination Optimization 49 3.5.


1 Data 51 3.5.2 Water Age Estimation 52 3.5.2.1 Travel Time Estimation 53 3.5.2.


2 Residential Time Estimation 54 3.5.3 Ammonia Prediction 54 3.5.4 Optimization Model Definition 57 3.5.5 Improvements in Customer Water Quality 59 3.5.


6 Plant Dosing Optimization 62 3.6 Conclusion 63 Acknowledgements 63 References 63 4 Lip Reading Framework using Deep Learning and Machine Learning 67 Hemant Kumar Gianey, Parth Khandelwal, Prakhar Goel, Rishav Maheshwari, Bhannu Galhotra and Divyanshu Pratap Singh 4.1 Introduction 68 4.1.1 Overview 68 4.1.2 Motivation 68 4.1.


3 Lip Reading System Outcomes and Deliverables 69 4.2 The Emergence and Definition of the Lip-Reading System 70 4.2.1 Background of Domain 70 4.2.2 Identified Problems 78 4.2.3 Tools and Technologies Used 78 4.


2.4 Implementation Aspects 78 4.2.4.1 Data Preparation 79 4.3 Design and Components of Lip-Reading System 82 4.4 Lip Reading System Architecture 82 4.5 Testing 84 4.


6 Problems Encountered During Implementation 84 4.6.1 Assumptions and Constraints 85 4.7 Conclusion 85 4.8 Future Work 85 References 86 5 New Perspective to Management, Economic Growth and Debt Nexus Analysis: Evidence from Indian Economy 89 Edmund Ntom Udemba, Festus Victor Bekun, Dervis Kirikkaleli and Esra Sipahi Döngül 5.1 Introduction 90 5.2 Literature Review 92 5.2.


1 External Debt and Economic Growth 92 5.2.2 Trade Openness, FDI, and Economic Growth 94 5.2.3 FDI and Economic Growth 94 5.3 Data 95 5.3.1 Analytical Framework and Data Description 96 5.


3.2 Theoretical Background and Specifications 96 5.3.2.1 Model Specification 98 5.4 Methodology and Findings 99 5.4.1 Unit Root Testing 99 5.


4.2 Cointegration 99 5.4.3 Vector Error Correction Model 103 5.4.4 Long-Run Relationship Estimation 105 5.4.5 Causality Test 107 5.


5 Conclusion and Policy Implications 108 Declarations 109 Availability of Data and Materials 109 Competing Interests 110 Funding 110 Authors'' Contributions 110 Acknowledgments 110 References 110 6 Data-Driven Delay Analysis with Applications to Railway Networks 115 Boyu Li, Ting Guo, Yang Wang and Fang Chen 6.1 Introduction 116 6.2 Related Works 118 6.3 Background Knowledge 119 6.3.1 Background and Problem Formulation 120 6.3.1.


1 Train Delay 120 6.3.1.2 Delay Propagation 121 6.3.2 Preliminaries 122 6.3.2.


1 Bayesian Inference 123 6.3.2.2 Markov Property 123 6.4 Delay Propagation Model 123 6.4.1 Conditional Bayesian Delay Propagation 123 6.4.


1.1 Delay Self-Propagation 124 6.4.1.2 Incremental Run-Time Delay 125 6.4.1.3 Incremental Dwell Time Delay 125 6.


4.1.4 Accumulative Departure Delay 126 6.4.2 Cross-Line Propagation, Backward Propagation and Train Connection Propagation 127 6.5 Primary Delay Tracing Back 130 6.5.1 Delay Candidates Selection 130 6.


5.2 Relation Construction 131 6.5.2.1 Preceding and Following Trains 131 6.5.2.2 Preceding and Connecting Trains 131 6.


6 Evaluation on Dwell Time Improvement Strategy 132 6.7 Experiments 135 6.7.1 Experiment Setting 135 6.7.2 Temporal Prediction of Delay Propagation 137 6.7.3 Spatial Prediction of Delay Propagation 138 6.


7.4 Case Study of Primary Delay Tracing Down 139 6.7.5 Evaluation of Dwell Time Improvement Strategy 140 6.8 Conclusion 142 References 142 7 Proposing a Framework to Analyze Breast Cancer in Mammogram Images Using Global Thresholding, Gray Level Co-Occurrence Matrix, and Convolutional Neural Network (CNN) 145 Ms. Tanishka Dixit and Ms. Namrata Singh 7.1 Introduction & Purpose of Study 146 7.


1.1 Segmentation 146 7.1.1.1 Types of Segmentation 147 7.1.2 Compression 150 7.2 Literature Review & Motivation 153 7.


3 Proposed Work 161 7.3.1 Algorithm 161 7.3.2 Explanation 162 7.3.3 Flowchart 162 7.4 Observation Tables and Figures 163 7.


5 Conclusion 176 7.6 Future Work 176 References 176 8 IoT Technologies for Smart Healthcare 181 Rehab A. Rayan, Imran Zafar and Christos Tsagkaris 8.1 Introduction 182 8.2 Literature Review 183 8.2.1 IoT-Based Smart Health 183 8.2.


2 Advantages of Applying IoT in Health 186 8.3 Findings 187 8.3.1 Significant Features and Applications of IoT in Health 187 8.3.1.1 Simultaneous Monitoring and Reporting 189 8.3.


1.2 End-to-End Connectivity and Affordability 190 8.3.1.3 Data Analysis 190 8.3.1.4 Tracking, Alerts, and Remote Medical Care 190 8.


3.1.5 Research 191 8.3.1.6 Patient-Generated Health Data (PGHD) 191 8.3.1.


7 Management of Chronic Diseases and Preventative Care 191 8.3.1.8 Home-Based and Short-Term Care 192 8.4 Case Study: CyberMed as an IoT-Based Smart Health Model 192 8.5 Discussions 193 8.5.1 Limitations of Adopting IoT in Health 193 8.


5.1.1 Data Security and Privacy 193 8.5.1.2 Connectivity 194 8.5.1.


3 Compatibility and Data Integration 195 8.5.1.4 Implementation Cost 195 8.5.1.5 Complexity and Risk of Errors 195 8.6 Future Insights 196 8.


7 Conclusions 197 References 197 9 Enhancement of Scalability of SVM Classifiers for Big Data 203 Vijaykumar Bhajantri, Shashikumar G. Totad and Geeta R. Bharamagoudar 9.1 Introduction 204 9.2 Support Vector Machine 205 9.2.1 Challenges 208 9.3 Parallel and Distributed Mechanism 209 9.


3.1 Shared-Memory Parallelism 209 9.4 Distributed Big Data Architecture 210 9.4.1 Hadoop MapReduce 210 9.4.2 Spark 210 9.4.


3 AKKA 211 9.5 Distributed High Performance Computing 212 9.5.1 GASNet 212 9.5.2 Charm++ 213 9.6 GPU Based Parallelism 214

To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...