Oxyfuel Combustion for Clean Energy Applications
Oxyfuel Combustion for Clean Energy Applications
Click to enlarge
Author(s): Badr, Hassan M.
Nemitallah, Medhat
Nemitallah, Medhat A.
ISBN No.: 9783030105877
Pages: x, 368
Year: 201902
Format: Trade Cloth (Hard Cover)
Price: $ 193.26
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Book Table of Contents Preambles Dedication Contributing Authors Preface Foreword Acknowledgments Chapter 1: Introduction 1.1 Global Warming 1.1.1 Carbon budget for the 2 oC limit 1.1.2 Required atmospheric CO2 reduction 1.2 Status of renewable energies 1.2.


1 Market and industry trends 1.2.2 Renewables for global warming control 1.3 carbon capture and storage (CCS) techniques 1.3.1 carbon capture technologies 1.3.1.


1 Pre-combustion carbon capture technology 1.3.1.2 Post-combustion carbon capture technology 1.3.1.3 Oxy-fuel combustion carbon capture technology 1.3.


2 Carbon storage techniques 1.3.2.1 Enhanced oil recovery (EOR) 1.3.2.2 Depleted oil/gas fields 1.3.


2.3 Deep saline aquifers 1.3.3 Carbon utilization techniques 1.4 Approaches for oxy-fuel combustion technology 1.4.1 Conventional combustion systems 1.4.


2 Oxygen transport reactors (OTRs) 1.5 Why oxy-combustion 1.6 Oxy-combustion in gas turbines 1.6.1 Required system modifications 1.6.2 Gas turbine performance under oxy-combustion 1.6.


3 Emissions characteristics 1.6.4 Flame stability 1.7 Bio-energy with CCS (BECCS) for negative CO2 emissions 1.7.1 Concept of BECCS 1.7.2 Status of BECCS 1.


8 Summary References Chapter 2: Application of Oxyfuel Combustion Technology into Conventional Combustors 2.1 Introduction 2.2 Oxy-fuel combustion characteristics 2.2.1 Reactions and emission characteristics 2.2.2 Oxy-combustion systems 2.2.


2.1 Air Separation Unit 2.2.2.2 Carbon dioxide purification unit 2.2.2.3 Flue gas recirculation system 2.


3 Oxy-combustion alternatives 2.3.1 Using air separation unit and conventional combustion chamber 2.3.1.1 Applications of Oxy-fuel combustion in gas turbines 2.3.1.


1.1 Typical characteristics 2.3.1.1.2 Optimal supply of oxygen and diluent to oxy-fuel combustion 2.3.1.


1.3 Reactions characteristics 2.3.2 Using membrane reactor technology 2.4 Oxy-fuel combustion in conventional combustion systems 2.4.1 Gaseous fuel operation 2.4.


2 Liquid fuel operation 2.4.2.1 General combustion characteristics of liquid fuels 2.4.2.2 Oxy-combustion characteristics of liquid fuels 2.4.


3 Coal fuel operation 2.4.3.1 Oxy-combustion characteristics of coal 2.4.3.2 Application of coal oxy-combustion in power cycles 2.4.


4 Recent advances and technology readiness level (TRL) 2.4.4.1 Oxy-combustion for coal-fired power plants 2.4.4.2 Oxy-combustion for gas turbines 2.5 Trends of oxy-combustion technology 2.


5.1 Oxy-combustion integrated power plants 2.5.2 Third generation technologies for CO2 capture 2.6 Summary References Chapter 3: Ion Transport Membranes (ITMs) for Oxygen Separation 3.1 Introduction 3.2 Oxygen separation membranes 3.3 Gaseous oxy-fuel combustion in OTRs 3.


4 Trending applications of OTR technology 3.4.1 OTRs for syngas production 3.4.1.1 Syngas OTM system characteristics 3.4.1.


2 Syngas catalytic OTRs 3.4.2 Combustion utilizing liquid fuels in OTRs 3.4.3 Membranes for Splitting H2O to Produce H2 3.4.4 Membranes for CO2 Utilization 3.4.


4.1 Splitting of CO2 for syngas and syn-fuel production 3.4.4.2 Conversion of CO2 into methanol 3.4.4.3 Use of CO2 for enhancing oil recovery 3.


4.4.4 Conversion of CO2 into plastics 3.5 Summary References Chapter 4: Novel Approaches for Clean Combustion in Gas Turbines 4.1 Introduction 4.2 Types of flame 4.2.1 Non-premixed/premixed flames 4.


2.2 MILD/Flameless combustion 4.2.3 Colorless distributed combustion (CDC) 4.2.4 Low-Swirl Injector (LSI) combustion 4.3 Burner design 4.3.


1 Swirl stabilized burners 4.3.1.1 Turbulent reacting flow 4.3.1.2 Swirling flow 4.3.


2 DLN/DLE burners 4.3.2.1 Construction and design of DLN/DLE burners 4.3.2.2 Emissions and combustion characteristics of DLN/DLE burners 4.3.


3 Catalytic combustion 4.3.4 Perforated plate burners 4.3.5 Environmental EV/SEV/AEV burners 4.3.5.1 Concept of operation of EV/SEV/AEV burners 4.


3.5.2 Performance of the EV/SEV/AEV burners 4.3.6 Micromixer burners 4.3.6.1 Micromixer design 4.


3.6.2 Lean Direct Injection (LDI) hydrogen micromixer combustion 4.4 Fuel flexibility 4.4.1 H2-enriched premixed combustion 4.4.2 Fuel variability concerns 4.


4.2.1 Concerns on hydrogen 4.4.2.2 Concerns on medium heating value fuels 4.4.2.


3 Concerns on low heating value fuels 4.5 Oxidizer flexibility 4.5.1 LPM air combustion 4.5.2 Oxy-fuel combustion 4.6 Feasibility of different combustion technologies 4.7 Summary References Chapter 5: CFD Approaches for Oxyfuel Combustion 6.


1 Introduction 6.2 General conservation equations 6.3 Modeling turbulent reacting flow 5.3.1 Modeling non-premixed turbulent combustion 5.3.1.1 Non-premixed combustion overview 5.


3.1.2 RANS model 5.3.2 Modeling turbulent premixed combustion 5.3.2.1 Premixed combustion overview 5.


3.2.2 Premixed flame fundamentals 5.3.2.3 Premixed combustion regime 5.3.2.


4 Combustion modeling governing equations 5.3.2.5 &.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...