Geometric Invariant Theory
Geometric Invariant Theory
Click to enlarge
Author(s): Kirwan, Frances
Mumford, David
ISBN No.: 9783642634000
Pages: xiv, 294
Year: 201210
Format: Trade Paper
Price: $ 281.12
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

0. Preliminaries.- 1. Definitions.- 2. First properties.- 3. Good and bad actions.


- 4. Further properties.- 5. Resumé of some results of Grothendieck.- 1. Fundamental theorems for the actions of reductive groups.- 1. Definitions.


- 2. The affine case.- 3. Linearization of an invertible sheaf.- 4. The general case.- 5. Functional properties.


- 2. Analysis of stability.- 1. A numeral criterion.- 2. The flag complex.- 3. Applications.


- 3. An elementary example.- 1. Pre-stability.- 2. Stability.- 4. Further examples.


- 1. Binary quantics.- 2. Hypersurfaces.- 3. Counter-examples.- 4. Sequences of linear subspaces.


- 5. The projective adjoint action.- 6. Space curves.- 5. The problem of moduli -- 1st construction.- 1. General discussion.


- 2. Moduli as an orbit space.- 3. First chern classes.- 4. Utilization of 4.6.- 6.


Abelian schemes.- 1. Duals.- 2. Polarizations.- 3. Deformations.- 7.


The method of covariants -- 2nd construction.- 1. The technique.- 2. Moduli as an orbit space.- 3. The covariant.- 4.


Application to curves.- 8. The moment map.- 1. Symplectic geometry.- 2. Symplectic quotients and geometric invariant theory.- 3.


Kähler and hyperkähler quotients.- 4. Singular quotients.- 5. Geometry of the moment map.- 6. The cohomology of quotients: the symplectic case.- 7.


The cohomology of quotients: the algebraic case.- 8. Vector bundles and the Yang-Mills functional.- 9. Yang-Mills theory over Riemann surfaces.- Appendix to Chapter 1.- Appendix to Chapter 2.- Appendix to Chapter 3.


- Appendix to Chapter 4.- Appendix to Chapter 5.- Appendix to Chapter 7.- References.- Index of definitions and notations.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...