Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
Click to enlarge
Author(s): Molitierno, Jason J.
ISBN No.: 9781439863374
Pages: 425
Year: 201201
Format: Trade Cloth (Hard Cover)
Price: $ 172.50
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Matrix Theory Preliminaries Vector Norms, Matrix Norms, and the Spectral Radius of a Matrix Location of Eigenvalues Perron-Frobenius Theory M-Matrices Doubly Stochastic Matrices Generalized Inverses Graph Theory Preliminaries Introduction to Graphs Operations of Graphs and Special Classes of Graphs Trees Connectivity of Graphs Degree Sequences and Maximal Graphs Planar Graphs and Graphs of Higher Genus Introduction to Laplacian Matrices Matrix Representations of Graphs The Matrix Tree Theorem The Continuous Version of the Laplacian Graph Representations and Energy Laplacian Matrices and Networks The Spectra of Laplacian Matrices The Spectra of Laplacian Matrices Under Certain Graph Operations Upper Bounds on the Set of Laplacian Eigenvalues The Distribution of Eigenvalues Less than One and Greater than One The Grone-Merris Conjecture Maximal (Threshold) Graphs and Integer Spectra Graphs with Distinct Integer Spectra The Algebraic Connectivity Introduction to the Algebraic Connectivity of Graphs The Algebraic Connectivity as a Function of Edge Weight The Algebraic Connectivity with Regard to Distances and Diameters The Algebraic Connectivity in Terms of Edge Density and the Isoperimetric Number The Algebraic Connectivity of Planar Graphs The Algebraic Connectivity as a Function Genus k where k is greater than 1 The Fiedler Vector and Bottleneck Matrices for Trees The Characteristic Valuation of Vertices Bottleneck Matrices for Trees Excursion: Nonisomorphic Branches in Type I Trees Perturbation Results Applied to Extremizing the Algebraic Connectivity of Trees Application: Joining Two Trees by an Edge of Infinite Weight The Characteristic Elements of a Tree The Spectral Radius of Submatrices of Laplacian Matrices for Trees Bottleneck Matrices for Graphs Constructing Bottleneck Matrices for Graphs Perron Components of Graphs Minimizing the Algebraic Connectivity of Graphs with Fixed Girth Maximizing the Algebraic Connectivity of Unicyclic Graphs with Fixed Girth Application: The Algebraic Connectivity and the Number of Cut Vertices The Spectral Radius of Submatrices of Laplacian Matrices for Graphs The Group Inverse of the Laplacian Matrix Constructing the Group Inverse for a Laplacian Matrix of a Weighted Tree The Zenger Function as a Lower Bound on the Algebraic Connectivity The Case of the Zenger Equalling the Algebraic Connectivity in Trees Application: The Second Derivative of the Algebraic Connectivity as a Function of Edge Weight a of Laplacian Matrices Under Certain Graph Operations Upper Bounds on the Set of Laplacian Eigenvalues The Distribution of Eigenvalues Less than One and Greater than One The Grone-Merris Conjecture Maximal (Threshold) Graphs and Integer Spectra Graphs with Distinct Integer Spectra The Algebraic Connectivity Introduction to the Algebraic Connectivity of Graphs The Algebraic Connectivity as a Function of Edge Weight The Algebraic Connectivity with Regard to Distances and Diameters The Algebraic Connectivity in Terms of Edge Density and the Isoperimetric Number The Algebraic Connectivity of Planar Graphs The Algebraic Connectivity as a Function Genus k where k is greater than 1 The Fiedler Vector and Bottleneck Matrices for Trees The Characteristic Valuation of Vertices Bottleneck Matrices for Trees Excursion: Nonisomorphic Branches in Type I Trees Perturbation Results Applied to Extremizing the Algebraic Connectivity of Trees Application: Joining Two Trees by an Edge of Infinite Weight The Characteristic Elements of a Tree The Spectral Radius of Submatrices of Laplacian Matrices for Trees Bottleneck Matrices for Graphs Constructing Bottleneck Matrices for Graphs Perron Components of Graphs Minimizing the Algebraic Connectivity of Graphs with Fixed Girth Maximizing the Algebraic Connectivity of Unicyclic Graphs with Fixed Girth Application: The Algebraic Connectivity and the Number of Cut Vertices The Spectral Radius of Submatrices of Laplacian Matrices for Graphs The Group Inverse of the Laplacian Matrix Constructing the Group Inverse for a Laplacian Matrix of a Weighted Tree The Zenger Function as a Lower Bound on the Algebraic Connectivity The Case of the Zenger Equalling the Algebraic Connectivity in Trees Application: The Second Derivative of the Algebraic Connectivity as a Function of Edge WeightMatrices for Trees Excursion: Nonisomorphic Branches in Type I Trees Perturbation Results Applied to Extremizing the Algebraic Connectivity of Trees Application: Joining Two Trees by an Edge of Infinite Weight The Characteristic Elements of a Tree The Spectral Radius of Submatrices of Laplacian Matrices for Trees Bottleneck Matrices for Graphs Constructing Bottleneck Matrices for Graphs Perron Components of Graphs Minimizing the Algebraic Connectivity of Graphs with Fixed Girth Maximizing the Algebraic Connectivity of Unicyclic Graphs with Fixed Girth Application: The Algebraic Connectivity and the Number of Cut Vertices The Spectral Radius of Submatrices of Laplacian Matrices for Graphs The Group Inverse of the Laplacian Matrix Constructing the Group Inverse for a Laplacian Matrix of a Weighted Tree The Zenger Function as a Lower Bound on the Algebraic Connectivity The Case of the Zenger Equalling the Algebraic Connectivity in Trees Application: The Second Derivative of the Algebraic Connectivity as a Function of Edge Weightighted Tree The Zenger Function as a Lower Bound on the Algebraic Connectivity The Case of the Zenger Equalling the Algebraic Connectivity in Trees Application: The Second Derivative of the Algebraic Connectivity as a Function of Edge Weight.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...