Preface xiii 1 Contact Angle Determination of Talc Powders from Heat of Immersion 1 Ismail Yildirim and Roe-Hoan Yoon 1.1 Introduction 1 1.2 Theoretical Background 3 1.3 Experimental 5 1.3.1 Materials 5 1.3.2 Experimental Apparatus and Procedures 6 1.
4 Results and Discussion 7 1.5 Summary 15 References 15 2 Surface Wetting at Macro and Nanoscale 17 Meenakshi Annamalai, Saurav Prakash, Siddhartha Ghosh, Abhijeet Patra and T. Venkatesan 2.1 Introduction 17 2.2 Intrinsic Wetting Properties of REOs 20 2.3 Nanoscale Approach to Measuring Wettability 25 2.4 On the Nature of Wettability of van der Waals Heterostructures 28 2.5 Summary 33 References 34 3 Wettability of Wood Surfaces with Waterborne Acrylic Lacquer Stains Modulated by DBD Plasma Treatment in Air at Atmospheric Pressure 41 Jure Zigon, Marko Petri? and Sebastian Dahle 3.
1 Introduction 41 3.2 Materials and Methods 43 3.2.1 Materials 43 3.2.2 Plasma Treatment 43 3.2.3 Contact Angle (CA) Measurements and Surface Free Energy (SFE) Determination 44 3.
2.4 Spreading Area Determination 45 3.2.5 Application of Coatings on Sample Surfaces 45 3.2.6 Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy 46 3.2.7 Confocal Laser Scanning Microscopy 46 3.
2.8 Pull-Off Adhesion Strength of the Coatings 46 3.2.9 Cross-Cut Test 46 3.3 Results and Discussion 47 3.3.1 Contact Angles and Surface Free Energy 47 3.3.
2 Spreading of Colored Water Droplets on Untreated and Plasma Treated Wood Surfaces 47 3.3.3 Surface Roughness 50 3.3.4 Contact Angles of Primer and Topcoat 50 3.3.5 Adhesion Strength Determined by the Pull-Off Test Method 52 3.3.
6 The Results of the Cross-Cut Tests 53 3.4 Summary and Conclusions 53 Acknowledgements 54 References 54 4 Wettability of Ultrafiltration Membranes 57 Konrad Terpi?owski, Ma?gorzata Bielska, Krystyna Prochaska and Emil Chibowski 4.1 Introduction 57 4.2 Apparent Surface Free Energy Determination 58 4.2.1 Contact Angle Hysteresis Approach 59 4.2.2 Neumann Equation-of-State Approach 59 4.
2.3 Equilibrium Contact Angle Approach 59 4.2.4 van Oss, Chaudhury and Good Approach 60 4.3 Experimental 60 4.3.1 Materials 60 4.3.
2 Methods 61 4.4 Results and Discussion 61 4.4.1 Surface Topography 61 4.4.2 Contact Angle Measurements 65 4.5 Conclusions 70 References 71 5 Determination of the Surface Free Energy of Solid Surfaces: Can the Best Model be Found 73 Frank M. Etzler 5.
1 Introduction 74 5.1.1 Zisman Critical Surface Tension 74 5.1.2 Neumann''s Method 75 5.1.3 van Oss, Chaudhury and Good Approach 77 5.1.
4 Chen and Chang Model 80 5.2 The Present Study 82 5.2.1 Statistical Methods 82 5.2.2 Dalal''s Data 85 5.3 Data Analysis 86 5.3.
1 Fittting of PVC Data 86 5.3.2 Fitting of PMMA Data 88 5.3.3 Assessing Which Model is Best 92 5.4 Summary and Conclusions 95 References 96 6 Surface Free Energy Characterization of Talc Particles 99 Ismail Yildirim and Roe-Hoan Yoon 6.1 Introduction 99 6.2 Theoretical Background 100 6.
2.1 vOCG Equation 100 6.2.2 Contact Angle Measurements 102 6.3 Experimental 104 6.3.1 Talc Samples 104 6.3.
2 Liquids 104 6.3.3 Capillary Rise Method 104 6.3.4 Thin Layer Wicking Method 105 6.3.5 Heat of Immersion Method 105 6.4 Results and Discussion 106 6.
4.1 Heat of Immersion 106 6.4.2 Contact Angles 107 6.4.3 Talc Surface Free Energy and Its Components 110 6.5 Summary and Conclusions 112 References 113 7 Determination of the Surface Free Energy of Skin and the Factors Affecting it by the Contact Angle Method 115 Davide Rossi and Antonio Bettero 7.1 Introduction 116 7.
2 Experimental 118 7.2.1 Method for Preparation of Ex Vivo Skin 120 7.2.2 Preparation of Liposomal Dispersion by the Bettero/Gazzaniga Method 120 7.2.3 Preparation of Test Liquids for the Surface Free Energy Analysis of In Vivo and Ex Vivo Skin 120 7.2.
4 Determination of SFE of In Vivo and Ex Vivo Skin using the SFECA Method 121 7.2.5 Evaluation of the Epidermic Hydration State by Corneometric Approach 123 7.2.6 Determination of the Epidermic Hydration State by the SFECA Method 123 7.2.7 Correlation Analyses and Mathematical Means 125 7.3 Results and Discussion 125 7.
3.1 Determination of the SFE of Ex Vivo Skin by the SFECA Method 126 7.3.1.1 Comparison between Surface Free Energy and Corneometric Data for the In Vivo Skin Hydration State Evaluation 129 7.3.1.2 Determination of the Hydration State of In Vivo Skin 130 7.
3.2 Characterization of SFE, DC and PC of In Vivo Skin by the SFECA Method 132 7.3.3 Determination of SFESKIN and Applicability of TVS Skin Test by the SFECA Method 135 7.4 Summary and Conclusions 139 Acknowledgments 141 References 141 8 Determination of Surface Tension Components of Aqueous Solutions Using Fomblin HC/25 ® Perfluoropolyether Liquid Film as a Solid Substrate 145 D. Rossi, S. Rossi and N. Realdon 8.
1 Introduction 146 8.2 Materials Used 151 8.3 Fomblin HC-25® Perfluoropolyether Liquid Film Preparation (Solid-Like Methodology) 153 8.4 Determination of Surface Free Energy (SFE) 153 8.4.1 Determination of Surface Free Energy (SFE) of PermaFoam 154 8.4.2 Determination of Surface Tension (ST) of MilliQ Water 155 8.
4.3 Determination of Surface Tension (ST) of Aqueous Solutions in DW 158 8.4.3.1 Sodium Chloride Solutions 160 8.4.3.2 Glycerol Solutions 162 8.
4.3.3 Sucrose Solutions 163 8.4.3.4 Ternary Sugar Solutions 167 8.5 Analysis of Correlations 170 8.6 Summary and Conclusions 171 8.
7 Acknowledgements 174 List of Abbreviations 174 References 175 9 Enhancing the Wettability of Polybenzimidazole (PBI) to Improve Fuel Cell Performance 179 Katerine Vega, Matthew Cocca, Han Le, Marc Toro, Anthony Garcia, Andrew Fleischer, Alla Bailey, Joel Shertok, Michael Mehan, Surendra K. Gupta and Gerald A. Takacs 9.1 Introduction 180 9.2 Experimental 181 9.2.1 Materials 181 9.2.
2 Production of O Atoms 181 9.2.3 X-Ray Photoelectron Spectroscopy (XPS) 181 9.2.4 Contact Angle Goniometry 182 9.2.5 Atomic Force Microscopy (AFM) 182 9.2.
6 Thermal Gravimetric Analysis (TGA) 182 9.3 Results and Discussion 183 9.3.1 XPS Analysis 183 9.3.1.1 XPS Quantitative Analyses and Contact Angle Measurements 183 9.3.
1.2 XPS Chemical State Analysis 184 9.3.2 Surface Topography of PBI Treated with O Atoms 185 9.3.3 TGA Analysis of PBI Samples Treated with O Atoms and Doped with H3PO4 186 9.4 Discussion 188 9.5 Conclusions 189 Acknowledgments 189 References 190 10 Evaluation of Sebum Resistance for Long-Wear Face Make-Up Products Using Contact Angle Measurements 193 Hy Si Bui, Mariko Hasebe and Jody Ebanks 10.
1 Introduction 193 10.1.1 Long-Wear Foundation 193 10.1.2 Wetting and Spreading 195 10.2 Experiments 196 10.2.1 Foundation Samples and Bio Skin Plate 196 10.
2.2 Rheology of Foundation Samples 196 10.2.3 Surface Roughness 197 10.2.4 Contact Angle Measurements 197 10.3 Results and Discussion 198 10.3.
1 Rheology of Foundation Samples 198 10.3.2 Surface Roughness 200 10.3.3 Surface Free Energy of Bio Skin Substrate and Foundation Films 203 10.4 Contact Angles of Foundations with Water 207 10.5 Contact Angles of Foundations with Sebum 209 10.6 Effect of Sebum on Color Transfer and Film Integrity 214 10.
7 Summary and Prospects 215 Acknowledgements 217 References 217 11 Contact Angle Hysteresis of Pressure Sensitive Adhesives due to Adhesion Tension Relaxation 223 Naoto Shiomura, Takashi Sekine and Dehua Yang 11.1 Introduction 223 11.2 Theoretical Background 224 11.3 Experimental 228 11.3.1 Preparation of Samples and Experimental Conditions 228 11.3.2 Static Contact Angle Measurement 228 11.
3.3 Surface Free Energy (SFE) Analysis 228 11.3.4 Dynamic Contact Angle as a Function of Time 229 11.3.5 Dynamic Contact Angle Hysteresis with the Wilhelmy Plate Method 229 11.3.6 Adhesion Tension Relaxation (ATR) 229 11.
3.7 Peel Force Measurement 230 11.4 Results and Discussion 230 11.4.1 Static Contact Angles and SFE Analysis 230 11.4.2 Dynamic Contact Angle as a Function of Time 232 11.4.
3 Dynamic Contact Angle Hysteresis 232 11.4.4 Adhesion Tension Relaxation (ATR) 233 11.4.5 Peel Force 235 11.5 Conclusion 236 References 237 12 The Potential of Surface Nano-Engineering and Superhydrophobic Surfaces in Drag Reduction 239 Ali Shahsavari, Amir Nejat and Seyed Farshid Chini Nomenclature 240 Greek Letters 240 Subscripts 241 Superscript 241 12.1 Introduction 241 12.2 Parameters Affecting the Slip Length 246 12.
3 Slip Length Measurement on Superhydrophobic Surfaces 249 12.4 Drag Reduction of Superh.