Modeling and Simulation for Microelectronic Packaging Assembly : Manufacturing, Reliability and Testing
Modeling and Simulation for Microelectronic Packaging Assembly : Manufacturing, Reliability and Testing
Click to enlarge
Author(s): Liu, J.
Liu, Shen
Liu, Sheng
ISBN No.: 9780470827802
Pages: 576
Year: 201105
Format: Trade Cloth (Hard Cover)
Price: $ 248.33
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Foreword by C. P. Wong xiii Foreword by Zhigang Suo xv Preface xvii Acknowledgments xix About the Authors xxi Part I Mechanics and Modeling 1 1 Constitutive Models and Finite Element Method 3 1.1 Constitutive Models for Typical Materials 3 1.1.1 Linear Elasticity 3 1.1.2 Elastic-Visco-Plasticity 5 1.


2 Finite Element Method 9 1.2.1 Basic Finite Element Equations 9 1.2.2 Nonlinear Solution Methods 12 1.2.3 Advanced Modeling Techniques in Finite Element Analysis 14 1.2.


4 Finite Element Applications in Semiconductor Packaging Modeling 17 1.3 Chapter Summary 18 References 19 2 Material and Structural Testing for Small Samples 21 2.1 Material Testing for Solder Joints 21 2.1.1 Specimens 21 2.1.2 A Thermo-Mechanical Fatigue Tester 23 2.1.


3 Tensile Test 24 2.1.4 Creep Test 26 2.1.5 Fatigue Test 31 2.2 Scale Effect of Packaging Materials 32 2.2.1 Specimens 33 2.


2.2 Experimental Results and Discussions 34 2.2.3 Thin Film Scale Dependence for Polymer Thin Films 39 2.3 Two-Ball Joint Specimen Fatigue Testing 41 2.4 Chapter Summary 41 References 43 3 Constitutive and User-Supplied Subroutines for Solders Considering Damage Evolution 45 3.1 Constitutive Model for Tin-Lead Solder Joint 45 3.1.


1 Model Formulation 45 3.1.2 Determination of Material Constants 47 3.1.3 Model Prediction 49 3.2 Visco-Elastic-Plastic Properties and Constitutive Modeling of Underfills 50 3.2.1 Constitutive Modeling of Underfills 50 3.


2.2 Identification of Material Constants 55 3.2.3 Model Verification and Prediction 55 3.3 A Damage Coupling Framework of Unified Viscoplasticity for the Fatigue of Solder Alloys 56 3.3.1 Damage Coupling Thermodynamic Framework 56 3.3.


2 Large Deformation Formulation 62 3.3.3 Identification of the Material Parameters 63 3.3.4 Creep Damage 66 3.4 User-Supplied Subroutines for Solders Considering Damage Evolution 67 3.4.1 Return-Mapping Algorithm and FEA Implementation 67 3.


4.2 Advanced Features of the Implementation 69 3.4.3 Applications of the Methodology 71 3.5 Chapter Summary 76 References 76 4 Accelerated Fatigue Life Assessment Approaches for Solders in Packages 79 4.1 Life Prediction Methodology 79 4.1.1 Strain-Based Approach 80 4.


1.2 Energy-Based Approach 82 4.1.3 Fracture Mechanics-Based Approach 82 4.2 Accelerated Testing Methodology 82 4.2.1 Failure Modes via Accelerated Testing Bounds 83 4.2.


2 Isothermal Fatigue via Thermal Fatigue 83 4.3 Constitutive Modeling Methodology 83 4.3.1 Separated Modeling via Unified Modeling 83 4.3.2 Viscoplasticity with Damage Evolution 84 4.4 Solder Joint Reliability via FEA 84 4.4.


1 Life Prediction of Ford Joint Specimen 84 4.4.2 Accelerated Testing: Insights from Life Prediction 87 4.4.3 Fatigue Life Prediction of a PQFP Package 91 4.5 Life Prediction of Flip-Chip Packages 93 4.5.1 Fatigue Life Prediction with and without Underfill 93 4.


5.2 Life Prediction of Flip-Chips without Underfill via Unified and Separated Constitutive Modeling 95 4.5.3 Life Prediction of Flip-Chips under Accelerated Testing 96 4.6 Chapter Summary 99 References 99 5 Multi-Physics and Multi-Scale Modeling 103 5.1 Multi-Physics Modeling 103 5.1.1 Direct-Coupled Analysis 103 5.


1.2 Sequential Coupling 104 5.2 Multi-Scale Modeling 106 5.3 Chapter Summary 107 References 108 6 Modeling Validation Tools 109 6.1 Structural Mechanics Analysis 109 6.2 Requirements of Experimental Methods for Structural Mechanics Analysis 111 6.3 Whole Field Optical Techniques 112 6.4 Thermal Strains Measurements Using Moire Interferometry 113 6.


4.1 Thermal Strains in a Plastic Ball Grid Array (PBGA) Interconnection 113 6.4.2 Real-Time Thermal Deformation Measurements Using Moire Interferometry 116 6.5 In-Situ Measurements on Micro-Machined Sensors 116 6.5.1 Micro-Machined Membrane Structure in a Chemical Sensor 116 6.5.


2 In-Situ Measurement Using Twyman-Green Interferometry 118 6.5.3 Membrane Deformations due to Power Cycles 118 6.6 Real-Time Measurements Using Speckle Interferometry 119 6.7 Image Processing and Computer Aided Optical Techniques 120 6.7.1 Image Processing for Fringe Analysis 120 6.7.


2 Phase Shifting Technique for Increasing Displacement Resolution 120 6.8 Real-Time Thermal-Mechanical Loading Tools 123 6.8.1 Micro-Mechanical Testing 123 6.8.2 Environmental Chamber 124 6.9 Warpage Measurement Using PM-SM System 124 6.9.


1 Shadow Moire and Project Moire Setup 125 6.9.2 Warpage Measurement of a BGA, Two Crowded PCBs 127 6.10 Chapter Summary 131 References 131 7 Application of Fracture Mechanics 135 7.1 Fundamental of Fracture Mechanics 135 7.1.1 Energy Release Rate 136 7.1.


2 J Integral 138 7.1.3 Interfacial Crack 139 7.2 Bulk Material Cracks in Electronic Packages 141 7.2.1 Background 141 7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System 142 7.


2.3 Results 146 7.3 Interfacial Fracture Toughness 148 7.3.1 Background 148 7.3.2 Interfacial Fracture Toughness of Flip-Chip Package between Passivated Silicon Chip and Underfill 150 7.4 Three-Dimensional Energy Release Rate Calculation 159 7.


4.1 Fracture Analysis 160 7.4.2 Results and Comparison 160 7.5 Chapter Summary 165 References 165 8 Concurrent Engineering for Microelectronics 169 8.1 Design Optimization 169 8.2 New Developments and Trends in Integrated Design Tools 179 8.3 Chapter Summary 183 References 183 Part II Modeling in Microelectronic Packaging and Assembly 185 9 Typical IC Packaging and Assembly Processes 187 9.


1 Wafer Process and Thinning 188 9.1.1 Wafer Process Stress Models 188 9.1.2 Thin Film Deposition 189 9.1.3 Backside Grind for Thinning 191 9.2 Die Pick Up 193 9.


3 Die Attach 198 9.3.1 Material Constitutive Relations 200 9.3.2 Modeling and Numerical Strategies 201 9.3.3 FEA Simulation Result of Flip-Chip Attach 204 9.4 Wire Bonding 206 9.


4.1 Assumption, Material Properties and Method of Analysis 207 9.4.2 Wire Bonding Process with Different Parameters 208 9.4.3 Impact of Ultrasonic Amplitude 210 9.4.4 Impact of Ultrasonic Frequency 212 9.


4.5 Impact of Friction Coefficients between Bond Pad and FAB 214 9.4.6 Impact of Different Bond Pad Thickness 217 9.4.7 Impact of Different Bond Pad Structures 217 9.4.8 Modeling Results and Discussion for Cooling Substrate Temperature after Wire Bonding 221 9.


5 Molding 223 9.5.1 Molding Flow Simulation 223 9.5.2 Curing Stress Model 230 9.5.3 Molding Ejection and Clamping Simulation 236 9.6 Leadframe Forming/Singulation 241 9.


6.1 Euler Forward versus Backward Solution Method 242 9.6.2 Punch Process Setup 242 9.6.3 Punch Simulation by ANSYS Implicit 244 9.6.4 Punch Simulation by LS-DYNA 246 9.


6.5 Experimental Data 248 9.7 Chapter Summary 252 References 252 10 Opto Packaging and Assembly 255 10.1 Silicon Substrate Based Opto Package Assembly 255 10.1.1 State of the Technology 255 10.1.2 Monte Carlo Simulation of Bonding/Soldering Process 256 10.


1.3 Effect of Matching Fluid 256 10.1.4 Effect of the Encapsulation 258 10.2 Welding of a Pump Laser Module 258 10.2.1 Module Description 258 10.2.


2 Module Packaging Process Flow 258 10.2.3 Radiation Heat Transfer Modeling for Hermetic Sealing Process 259 10.2.4 Two-Dimensional FEA Modeling for Hermetic Sealing 260 10.2.5 Cavity Radiation Analyses Results and Discussions 262 10.3 Chapter Summary 264 References 264 11 MEMS and MEMS Package Assembly 267 11.


1 A Pressure Sensor Packaging (Deformation and Stress) 267 11.1.1 Piezoresistance in Silicon 268 11.1.2 Finite Element Modeling and Geometry 270 11.1.3 Material Properties 270 11.1.


4 Results and Discussion 271 11.2 Mounting of Pressure Sensor 273 11.2.1 Mounting Process 273 11.2.2 Modeling 274 11.2.3 Results 276 11.


2.4 Experiments and Discussions 277 11.3 Thermo-Fluid Based Accelerometer Packaging 279 11.3.1 Device Structure and Operation Principle 279 11.3.2 Linearity Analysis 280 11.3.


3 Design Consideration 284 11.3.4 Fabrication 285 11.3.5 Experiment 285 11.4 Plastic Packaging for a Capacitance Based Accelerometer 288 11.4.1 Micro-Machined Accelerometer 289 11.


4.2 Wafer-Level Packaging 290 11.4.3 Packaging of Capped Accelerometer 296 11.5 Tire Pressure Monitoring System (TPMS) Antenna 303 11.5.1 Test of TPMS System with Wheel Antenna 304 11.5.


2 3D Electromagnetic Modeling of Wheel Antenna 306 11.5.3 Stress Modeling of Installed TPMS 307 11.6 Thermo-Fluid Based Gyroscope Packaging 310 11.6.1 Operating Principle and Design 312 11.6.2 Analysis of Angular Acceleration Coupling 313 11.


6.3 Numerical Simulation and Analysis 314 11.7 Microjets for Radar and LED Cooling 316 11.7.1 Microjet Array Cooling System 319 11.7.2 Preliminary Experiments 320 11.7.


3 Simulation and Model Verification 322 11.7.4 Comparison and Optimization of Three Microje.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...