R-Calculus, II: Many-Valued Logics
R-Calculus, II: Many-Valued Logics
Click to enlarge
Author(s): Li, Wei
ISBN No.: 9789811692932
Pages: xiii, 271
Year: 202204
Format: Trade Cloth (Hard Cover)
Price: $ 234.59
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

1 Introduction 11 1.1 Belief revision . 11 1.2 R-calculus . 13 1.3 Contents in the first-volume . 14 1.4 Contents in this volume .


17 1.5 Notations . 21 2 R-Calculus For Propositional Logic 24 2.1 Basic definitions . 25 2.2 Monotonic tableau proof systems . 26 2.2.


1 Tableau proof system Tf . 26 2.2.2 Tableau proof system Tt . 29 2.3 Nonmonotonic tableau proof systems . 31 2.3.


1 Tableau proof system St . 32 2.3.2 Tableau proof system Sf . 34 2.4 R-calculi . 35 2.4.


1 R-calculus Rt . 36 2.4.2 R-calculus Rf . 40 2.5 Projecting R-calculi to tableau proof systems . 41 2.6 Notes .


43 3 R-Calculus For L3-Valued Propositional Logic 45 3.1 Basic definitions . 46 3.2 Monotonic tableau proof systems . 49 3.2.1 Tableau proof system Tt . 49 3.


2.2 Tableau proof system Tm . 50 3.2.3 Tableau proof system Tf . 51 3.3 Nonmonotonic tableau proof systems . 52 3.


3.1 Tableau proof system St . 54 3.3.2 Tableau proof system Sm . 55 3.3.3 Tableau proof system Sf .


55 3.4 R-calculi . 56 3.4.1 R-calculus Rt . 57 3.4.2 R-calculus Rm .


60 3.4.3 R-calculus Rf . 63 3.5 Satisfiability and unsatisfiability . 65 3.5.1 t-satisfiability and t-unsatisfiability .


65 3.5.2 m-satisfiability and m-unsatisfiability . 67 3.5.3 f-satisfiability and f-unsatisfiability . 68 3.6 Projecting R-calculi to tableau proof systems .


70 3.7 Notes . 71 4 R-Calculus For L3-Valued PL,II 75 4.1 Monotonic tableau proof systems . 75 4.1.1 Tableau proof system Tt . 76 4.


1.2 Tableau proof system Tm . 77 4.1.3 Tableau proof system Tf . 78 4.2 Nonmonotonic tableau proof systems . 79 4.


2.1 Tableau proof system St . 79 4.2.2 Tableau proof system Sm . 80 4.2.3 Tableau proof system Sf .


81 4.3 R-calculi . 82 4.3.1 R-calculus Rt . 82 4.3.2 R-calculus Rm .


85 4.3.3 R-calculus Rf . 87 4.4 Validity and invalidity . 90 4.4.1 t-invalidity and t-validity .


90 4.4.2 m-invalidity and m-validity . 92 4.4.3 f-invalidity and f-validity . 94 4.5 Projecting R-calculi to tableau proof systems .


96 5 R-Calculus For B22-Valued PL 98 5.1 Basic definitions . 100 5.2 Monotonic tableau proof systems . 101 5.2.1 Tableau proof system Tt . 103 5.


2.2 Tableau proof system Ttop . 104 5.2.3 Tableau proof system T⊥. 105 5.2.4 Tableau proof system Tf .


107 5.3 Nonmonotonic tableau proof systems . 108 5.3.1 Tableau proof system St . 110 5.3.2 Tableau proof system Stop .


112 5.3.3 Tableau proof system S⊥. 113 5.3.4 Tableau proof system Sf . 114 5.4 R-calculi .


116 5.4.1 R-calculus Rt . 117 5.4.2 R-calculus Rtop . 121 5.4.


3 R-calculus R⊥ . 125 5.4.4 R-calculus Rf . 128 5.5 Projecting R-calculi to tableau proof systems . 132 5.6 Notes .


135 6 R-Calculus For B22-Valued PL,II 138 6.1 Monotonic tableau proof systems . 140 6.1.1 Tableau proof system Tt top . 142 6.1.2 Tableau proof system Tt⊥ .


143 6.2 Tableau proof systems . 145 6.2.1 Tableau proof system Tt top . 146 6.2.2 Tableau proof system Tt⊥ .


148 6.3 Nonmonotonic tableau proof systems . 149 6.3.1 Tableau proof system St top . 150 6.3.2 Tableau proof system St⊥.


151 6.3.3 Tableau proof system St top . 152 6.3.4 Tableau proof system St⊥. 153 6.4 R-calculi .


155 6.4.1 R-calculus Rt top . 155 6.4.2 R-calculus Rt⊥. 157 6.4.


3 R-calculus Rf top . 159 6.4.4 R-calculus Rf.⊥. 161 6.5 Projecting R-calculi to tableau proof systems . 163 6.


6 Notes . 165 7 Complementary R-Calculus For PL 168 7.1 Co-R-calculi in propositional logic . 169 7.1.1 Co-R-calculus Ut . 169 7.1.


2 Co-R-calculus Uf . 171 7.2 Co-R-calculi in L3-valued PL . 173 7.2.1 Co-R-calculus Ut . 173 7.2.


2 Co-R-calculus Um . 176 7.2.3 Co-R-calculus Uf . 179 7.3 Co-R-calculi in B22-valued propositional logic . 181 7.3.


1 Co-R-calculus Ut . 182 7.4 Notes . 187 8 Multisequents and Hypersequents 188 8.1 Tableau proof systems . 189 8.1.1 Tableau-typed proof system Tt .


189 8.1.2 Tableau proof system Tt . 190 8.2 Sequents in L3-valued propositional logic . 192 8.2.1 Gentzen deduction system for Δ=>∑.


193 8.2.2 Gentzen deduction system for Θ=> Ξ. 195 8.2.3 Gentzen deduction system for Γ=> Π. 196 8.3 Multisequents in L3-valued PL .


197 8.3.1 Multisequents . 199 8.3.2 Co-multisequents . 202 8.4 Hypersequents in L3-valued PL .


206 8.5 Notes . 214 9 Product of Two R-Calculi 216 9.1 Tableau proof systems in modalized PL . 217 9.1.1 Monotonic tableau proof systems . 217 9.


1.2 Nonmonotonic tableau proof systems . 218 9.2 Product of B2-valued PLs . 219 9.2.1 Tableau pro.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...