Fast Data Processing with Spark
Fast Data Processing with Spark
Click to enlarge
Author(s): Karau, Holden
ISBN No.: 9781782167075
Pages: 120
Year: 201310
Format: E-Book
E-Book Format Price
DRM EPUB $ 26.32

In DetailSpark is a framework for writing fast, distributed programs. Spark solves similar problems as Hadoop MapReduce does but with a fast in-memory approach and a clean functional style API. With its ability to integrate with Hadoop and inbuilt tools for interactive query analysis (Shark), large-scale graph processing and analysis (Bagel), and real-time analysis (Spark Streaming), it can be interactively used to quickly process and query big data sets.Fast Data Processing with Spark covers how to write distributed map reduce style programs with Spark. The book will guide you through every step required to write effective distributed programs from setting up your cluster and interactively exploring the API, to deploying your job to the cluster, and tuning it for your purposes.Fast Data Processing with Spark covers everything from setting up your Spark cluster in a variety of situations (stand-alone, EC2, and so on), to how to use the interactive shell to write distributed code interactively. From there, we move on to cover how to write and deploy distributed jobs in Java, Scala, and Python.We then examine how to use the interactive shell to quickly prototype distributed programs and explore the Spark API.


We also look at how to use Hive with Spark to use a SQL-like query syntax with Shark, as well as manipulating resilient distributed datasets (RDDs).ApproachThis book will be a basic, step-by-step tutorial, which will help readers take advantage of all that Spark has to offer.Who this book is forFast Data Processing with Spark is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too much to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...