Foreword xv Preface xvii Acknowledgments xxiii Editors Biography xxv List of Contributors xxvii Part I Introduction 1 1 Basis, Definition, and Application 3 Craig Rieger 1.1 Introduction 3 1.2 Definition and Application 3 References 6 2 General Use Case Introduction 7 Brian Johnson 2.1 Introduction 7 2.2 Importance of Resilient Controls for Power Systems 7 2.3 Power Systems Operations and Control 7 2.4 Summary 9 References 9 Part II Infrastructure Fundamentals 11 3 Power Grid Architecture 13 Brian Johnson and RĂ´mulo Bainy Objectives 13 3.1 Introduction 13 3.
2 Classical Power System Architectures 14 3.3 Emerging Architecture Trends 17 3.3.1 Smart Grids 17 3.3.2 Microgrids 20 3.4 Power Systems Operations and Control 22 3.5 Power Systems Planning 24 3.
5.1 Modeling and Simulation 25 3.6 Measures of Performance 26 3.7 Summary 29 Further Reading 30 References 31 4 Control System Architecture 33 Thomas Baldwin Objectives 33 4.1 Introduction 33 4.1.1 Background 33 4.1.
2 Basic Generator Control Loops 34 4.1.3 Load Frequency Control 35 4.1.4 The Generator 35 4.1.5 The Load 36 4.1.
6 The Turbine-Based Prime Mover 37 4.1.7 The Speed Governor 38 4.1.8 The Load Frequency Control Loop 39 4.1.9 Multiple Generators Operating with LFC 40 4.2 Automatic Generation Control 42 4.
2.1 Background 42 4.2.2 The AGC in Single Area Systems 42 4.2.3 The AGC in Multi-Area Systems 43 4.2.4 The Tie Line 43 4.
2.5 Tie Line Control 47 4.2.6 AGC with Generation Allocation 47 4.3 Reactive Power and Voltage Control 49 4.3.1 Background 49 4.3.
2 Voltage Sensor 51 4.3.3 Amplifier 51 4.3.4 Exciter 51 4.3.5 Generator 51 4.3.
6 The Voltage Control Loop 52 4.4 Excitation System Stabilizer 52 4.4.1 Rate Feedback Method 52 4.4.2 PID Controller 54 4.5 Summary 55 Further Reading 56 5 Communication Architecture 57 Chris Dyer Objectives 57 5.1 Introduction 57 5.
2 Communication Media 58 5.2.1 Copper Wire 59 5.2.1.1 Telecommunication Industry Association (TIA)/Electronic Industries Association (EIA) RS- 232 59 5.2.1.
2 Twisted Pair (TIA RS-485) 59 5.2.1.3 Twisted Pair (Ethernet [10Base-T]) 60 5.2.2 Fiber-Optic Cable 60 5.2.2.
1 Optical Ground Wire (OPGW) 61 5.2.2.2 All-Dielectric Self-Supporting (ADSS) Cables 62 5.2.2.3 Underground Cables 62 5.2.
2.4 Splice Box 63 5.2.2.5 Fiber-optic Terminations 63 5.2.3 Patch Panel 65 5.2.
3.1 Patch Cables 65 5.2.3.2 Fiber-optic Loss Calculations 66 5.2.4 Radio-Frequency (RF) Communications 66 5.2.
4.1 Microwave 66 5.2.4.2 VHF/UHF Radio 68 5.2.4.3 Spread-Spectrum Communication 68 5.
2.4.4 Mesh Communication Networks 68 5.2.4.5 Radio Propagation and Path Studies 68 5.2.5 Local Area Networks 68 5.
2.5.1 Business Enterprise Networks 69 5.2.5.2 Operational Enterprise Networks 69 5.2.5.
3 Remote Outstation Networks 73 5.2.6 Backhaul Communications 78 5.2.7 Emerging Technologies and Other Considerations 79 5.3 Summary 80 References 81 Part III Disciplinary Fundamentals 83 6 Introducing Interdisciplinary Studies 85 Craig Rieger Objectives 85 6.1 Introduction 85 6.2 The Pathway to an Interdisciplinary Team 86 Further Reading 87 7 Cybersecurity 89 Daniel Conte de Leon, Georgios M.
Makrakis, and Constantinos Kolias Objectives 89 7.1 Introduction 89 7.2 Systems and Control Systems 90 7.2.1 Systems, Subsystems, and Analysis Boundaries 90 7.2.2 System Subjects and Objects 90 7.2.
3 Subject Communication and Cyber Systems 90 7.3 Fundamental Cybersecurity Objectives: The CIA Triad 91 7.3.1 Confidentiality 91 7.3.2 Integrity 92 7.3.3 Availability 93 7.
4 Fundamental Cybersecurity Techniques 93 7.4.1 Cryptography 93 7.4.1.1 Symmetric Encryption 94 7.4.1.
2 Asymmetric Encryption 94 7.4.1.3 Digital Signatures 95 7.4.2 Authentication and Identity 95 7.4.3 Authorization and Access Control 96 7.
4.4 Accountability 97 7.4.5 Redundancy and Replication 97 7.5 Threats, Vulnerabilities, and Attacks 97 7.5.1 Definitions 97 7.5.
2 Common Types of ICS Vulnerabilities 98 7.5.2.1 Human Related 98 7.5.2.2 Software or Firmware Based 99 7.5.
2.3 Policies and Procedures 99 7.5.3 Attack Stages and the Cyber Kill Chain 100 7.5.3.1 Reconnaissance 100 7.5.
3.2 Weaponization 100 7.5.3.3 Delivery 101 7.5.3.4 Exploitation 101 7.
5.3.5 Installation 101 7.5.3.6 Command and Control 101 7.5.3.
7 Actions on Objectives 101 7.5.3.8 ICS Cyber Kill Chain 101 7.6 Secure System Design Principles 102 7.6.1 Continuous Improvement 102 7.6.
2 Defense in Depth 102 7.6.3 Least Privilege 103 7.6.4 Validated Design and Implementation 103 7.6.5 Fail-safe Defaults 103 7.6.
6 Separation of Duties 104 7.6.7 Psychological Acceptability 104 7.6.8 Modularization 104 7.6.9 Accountability 104 7.7 Approaches for Threat and Risk Assessment and Mitigation 105 7.
7.1 Risk Framing, Legal, and Compliance 105 7.7.2 Risk Assessment 106 7.7.3 Risk Response or Treatment 106 7.7.4 Risk Monitoring 106 7.
7.5 Security Management and Continuous Improvement 107 7.8 Approaches for Incident Detection and Response 107 7.8.1 Incident and Intrusion Detection 107 7.8.1.1 Host-Based IDS 108 7.
8.1.2 Network-Based IDS 108 7.8.1.3 Distributed or Hybrid IDS 108 7.8.1.
4 Signature Detection 108 7.8.1.5 Anomaly Detection 108 7.8.2 Incident Response 109 7.9 Summary 109 7.10 Thoughtful Questions to Ensure Comprehension 109 Further Reading 110 References 110 8 Control Theory 113 Desineni S.
Naidu Objectives 113 8.1 Introduction 113 8.1.1 Formal Statement of Optimal Control Problem 114 8.2 Deterministic Linear Systems 114 8.2.1 Open-Loop Optimal Control of Linear Systems 114 8.2.
2 Closed-Loop Optimal Control of Linear Systems 115 8.2.3 Finite-Time Linear Quadratic Regulator: Time-Varying Case 116 8.2.4 Infinite-Interval Regulator System: Time-Invariant Case 116 8.2.5 Linear Quadratic Tracking System: Finite-Time Case 117 8.2.
6 Gain Margin and Phase Margin 118 8.2.7 Gain Margin 118 8.2.8 Phase Margin 118 8.3 Pontryagin Principle and HJB Equation 119 8.3.1 The Hamilton-Jacobi-Bellman (HJB) Equation 119 8.
4 Stochastic Linear Systems 120 8.4.1 Optimal Estimation 120 8.4.2 Optimal Control 121 8.5 Deterministic Nonlinear Systems 121 8.5.1 Finite-Horizon Regulation and Tracking for Nonlinear Systems 122 8.
5.2 Finite-Horizon Regulator 122 8.5.3 Finite-Horizon Tracking for Nonlinear Systems 123 8.6 Summary 124 8.7 Thoughtful Questions to Ensure Comprehension 124 Further Reading 125 References 125 9 Human System Interfaces 127 Ronald Boring Objectives 127 9.1 Introduction 127 9.1.
1 Control Systems 127 9.1.2 History of Humans and Control Systems 128 9.1.3 Common Elements of Control System HSIs 128 9.1.4 Consequences of Poor HSIs in Control Systems 129 9.2 Basic Methods 131 9.
2.1 Introduction to User-Centered Design 131 9.2.2 Design Planning 133 9.2.3 Prototyping Process 134 9.2.4 Evaluation Process 135 9.
2.5 Validation versus Verification 138 9.3 Summary 140 Further Reading 142 References 142 Part IV Metrics Fundamentals 145 10 Differentiating Resilience 147 Jeffrey D. Taft Objectives 147 10.1 Introduction 147 10.2 Conventional Views of Grid Resilience 150 10.3 Grid Characteristics 151 10.4 Grid Resilience and the Relationship to Electric Reliability 152 10.
5 Characterization of Resilience 155 10.5.1 Stress and Stressors 156 10.5.2 Physical Scale 156 10.5.3 Temporal Scale 157 10.5.
4 Strain 157 10.5.5 Resilience Domains 157 10.5.5.1 Stress Avoidance 157 10.5.5.
2 Stress Resistance 158 10.5.5.3 Strain Adjustment 159 10.5.6 Foundational Support 160 10.6 Architectural Principles and Concepts for Resilience 160 10.6.
1 All Hazards Approach 162 10.6.2 Situational Awareness 162 10.6.3 ULS Normal Failures Approach 162 10.6.4 System Hardness 162 10.6.
5 Flexibility 162 10.6.6 Extensibility 163 10.6.7 Agility 163 10.6.8 Distributed Versus Centralized Systems 163 10.6.
9 Buffering 163 10.6.10 Structural Resilience 163 10.6.11 Redundancy 164 10.7 Structural Resilience Quantification and Valuation 164 10.8 Summary 166 Further Reading 167 References 167 11 Cross-architecture Metrics 169 Timothy McJunkin Objectives 169 11.1 Definition of Resilience 169 11.
2 Notional Capture of Resilience Adaptive Capacity 173 11.3 Response Epoch: Adaptive Capacity on an Asset-Level Development 17.