Vector Optimization
This book presents fundamentals and important results of vector optimization in a general setting. The theory developed includes scalarization, existence theorems, a generalized Lagrange multiplier rule and duality results. Applications to vector approximation, cooperative game theory and multiobjective optimization are described. The theory is extended to set optimization with particular emphasis on contingent epiderivatives, subgradients and optimality conditions. Background material of convex analysis being necessary is concisely summarized at the beginning.