Preface xxi 1 Transition Metal Oxides in Solar-to-Hydrogen Conversion 1 Zuzanna Bielan and Katarzyna Siuzdak 1.1 Introduction 2 1.2 Solar-to-Hydrogen Conversion Processes Utilizing Transition Metal Oxides 3 1.2.1 Photocatalysis 3 1.2.2 Photoelectrocatalysis 5 1.2.
3 Thermochemical Water Splitting 6 1.3 Transition Metal Oxides in Solar-to-Hydrogen Conversion Processes 7 1.3.1 Photocatalysis and Photoelectrocatalysis 7 1.3.1.1 TiO 2 8 1.3.
1.2 α-Fe 2 O 3 16 1.3.1.3 CuO/Cu 2 O 20 1.3.2 Thermochemical Water Splitting 23 1.3.
2.1 Fe 3 O 4 /FeO Redox Pair 24 1.3.2.2 CeO 2 /Ce 2 O 3 and CeO/CeO 2-δ Redox Pairs 25 1.3.2.3 ZnO/Zn Redox Pair 27 1.
4 Conclusions and Future Perspectives 28 References 29 2 Catalytic Conversion Involving Hydrogen from Lignin 41 Satabdi Misra and Atul Kumar Varma List of Abbreviations 41 2.1 Introduction 42 2.1.1 Background of Bio-Refinery and Lignin 42 2.1.2 Lignin as an Alternate Source of Energy 44 2.1.3 Lignin Isolation Process 45 2.
2 Catalytic Conversion of Lignin 45 2.2.1 Lignin Reductive Depolymerization into Aromatic Monomers 47 2.2.2 Catalytic Hydrodeoxydation (HDO) of Lignin 48 2.2.3 Hydrodeoxydation (HDO) of Lignin-Derived-Bio-Oil 51 Summary and Outlook 52 References 53 3 Solar-Hydrogen Coupling Hybrid Systems for Green Energy 65 Bilge Coskuner Filiz, Esra Balkanli Unlu, Hülya Civelek Yörüklü, Meltem Karaismailoglu Elibol, Yagmur Akar, Ali Turgay San, Halit Eren Figen and Aysel Kantürk Figen 3.1 Concept of Green Sources and Green Storage 66 3.
2 Coupling of Green to Green 67 3.3 Solar Energy-Hydrogen System 67 3.3.1 Photoelectrochemical Hydrogen Production 68 3.3.1.1 PEC Materials 70 3.3.
1.2 Photoelectrochemical Systems 73 3.3.2 Electrochemical Hydrogen Production 74 3.3.2.1 Polymer Electrolyte Membrane Electrolysis Cell (PEMEC) 75 3.3.
2.2 Alkaline Electrolysis Cell (AEC) 76 3.3.2.3 Solid Oxide Electrolysis Cell (SOEC) 77 3.3.3 Fuel Cell 78 3.3.
4 Photovoltaic 79 3.4 Thermochemical Systems 80 3.5 Photobiological Hydrogen Production 82 3.6 Conclusion 84 References 85 4 Green Sources to Green Storage on Solar-Hydrogen Coupling 97 A. Mohan Kumar, R. Rajasekar, P. Sathish Kumar, S. Santhosh and B.
Premkumar 4.1 Introduction 98 4.1.1 Hybrid System 99 4.2 Concentrated Solar Thermal H 2 Production 101 4.3 Thermochemical Aqua Splitting Technology for Solar-H 2 Generation 103 4.4 Solar to Hydrogen Through Decarbonization of Fossil Fuels 105 4.4.
1 Solar Cracking 106 4.5 Solar Thermal-Based Hydrogen Generation Through Electrolysis 107 4.6 Photovoltaics-Based Hydrogen Production 107 4.7 Conclusion 109 References 110 5 Electrocatalysts for Hydrogen Evolution Reaction 115 R. Shilpa, K. S. Sibi, S. R.
Sarath Kumar, R. K. Pai and R.B. Rakhi 5.1 Introduction 116 5.2 Parameters to Evaluate Efficient HER Catalysts 117 5.2.
1 Overpotential (o.p) 117 5.2.2 Tafel Plot 118 5.2.3 Stability 119 5.2.4 Faradaic Efficiency and Turnover Frequency 119 5.
2.5 Hydrogen Bonding Energy (HBE) 120 5.3 Categories of HER Catalysts 121 5.3.1 Noble Metal-Based Catalysts 121 5.3.2 Non-Noble Metal-Based Catalysts 125 5.3.
3 Metal-Free 2D Nanomaterials 126 5.3.4 Transition Metal Dichalcogenides 129 5.3.5 Transition Metal Oxides and Hydroxides 130 5.3.6 Transition Metal Phosphides 132 5.3.
7 MXenes (Transition Metal Carbides and Nitrides) 132 Conclusion 134 References 134 6 Recent Progress on Metal Catalysts for Electrochemical Hydrogen Evolution 147 Tejaswi Jella and Ravi Arukula 6.1 Introduction 148 6.1.1 Type of Water Electrolysis Technologies 148 6.1.1.1 Alkaline Electrolysis (AE) 149 6.1.
1.2 Proton Exchange Membrane Electrolysis (peme) 149 6.1.1.3 Solid Oxide Electrolysis (SOE) 149 6.2 Mechanism of Hydrogen Evolution Reaction (HER) 149 6.2.1 Performance Evaluation of Catalyst 151 6.
3 Various Electrocatalysts for Hydrogen Evolution Reaction (her) 153 6.3.1 Noble Metal Catalysts for HER 153 6.3.1.1 Platinum-Based Catalysts 153 6.3.1.
2 Palladium Based Catalysts 155 6.3.1.3 Ruthenium Based Catalysts 157 6.3.2 Non-Noble Metal Catalysts 158 6.3.2.
1 Transition Metal Phosphides (TMP) 158 6.3.2.2 Transition Metal Chalcogenides 162 6.3.2.3 Transition Metal Carbides (TMC) 163 6.4 Conclusion and Future Aspects 164 References 165 7 Dark Fermentation and Principal Routes to Produce Hydrogen 181 Luana C.
Grangeiro, Bruna S. de Mello, Brenda C. G. Rodrigues, Caroline Varella Rodrigues, Danieli Fernanda Canaver Marin, Romario Pereira de Carvalho Junior, Lorena Oliveira Pires, Sandra Imaculada Maintinguer, Arnaldo Sarti and Kelly J. Dussán 7.1 Introduction 182 7.2 Biohydrogen Production from Organic Waste 183 7.2.
1 Crude Glycerol 186 7.2.1.1 Dark Fermentation of Crude Glycerol to Biohydrogen and Bio Products 187 7.2.2 Dairy Waste 189 7.2.2.
1 Dark Fermentation of Dairy Waste to Biohydrogen and Bioproducts 190 7.2.3 Fruit Waste 193 7.2.3.1 Dark Fermentation of Fruit Waste to Hydrogen and Bioproducts 194 7.3 Anaerobic Systems 198 7.3.
1 Continuous Multiple Tube Reactor 206 7.4 Conclusion and Future Perspectives 209 Acknowledgements 210 References 210 8 Catalysts for Electrochemical Water Splitting for Hydrogen Production 225 Zaib Ullah Khan, Mabkhoot Alsaiari, Muhammad Ashfaq Ahmed, Nawshad Muhammad, Muhammad Tariq, Abdur Rahim and Abdul Niaz 8.1 Introduction 226 8.2 Water Splitting and Their Products 229 8.3 Different Methods Used for Water Splitting 229 8.3.1 Setup for Water Splitting Systems at a Basic Level 229 8.3.
2 Photocatalysis 230 8.3.3 Electrolysis 232 8.4 Principles of PEC and Photocatalytic H 2 Generation 232 8.5 Electrochemical Process for Water Splitting Application 233 8.5.1 Water Splitting Through Electrochemistry 233 8.6 Different Materials Used in Water Splitting 233 8.
6.1 Water Oxidation (OER) Materials 233 8.6.2 Developing Materials for Hydrogen Synthesis 235 8.6.3 Material Stability for Water Splitting 235 8.7 Mechanism of Electrochemical Catalysis in Water Splitting and Hydrogen Production 235 8.7.
1 Electrochemical Water Splitting with Cheap Metal-Based Catalysts 236 8.7.2 Catalysts with Only One Atom 236 8.7.3 Electrochemical Water Splitting Using Low-Cost Metal-Free Catalysts 237 8.8 Water Splitting and Hydrogen Production Materials Used in Electrochemical Catalysis 238 8.8.1 Metal and Alloys 238 8.
8.2 Metal Oxides/Hydroxides and Chalogenides 239 8.8.3 Metal Carbides, Borides, Nitrides, and Phosphides 239 8.9 Uses of Hydrogen Produced from Water Splitting 240 8.9.1 Water Splitting Generates Hydrogen Energy 240 8.9.
2 Photoelectrochemical (PEC) Water Splitting 241 8.9.3 Thermochemical Water Splitting 241 8.9.4 Biological Water Splitting 241 8.9.5 Fermentation 241 8.9.
6 Biomass and Waste Conversions 242 8.9.7 Solar Thermal Water Splitting 242 8.9.8 Renewable Electrolysis 242 8.9.9 Hydrogen Dispenser Hose Reliability 242 8.10 Conclusion 243 References 243 9 Challenges and Mitigation Strategies Related to Biohydrogen Production 249 Mohd Nur Ikhmal Salehmin, Ibdal Satar and Mohamad Azuwa Mohamed 9.
1 Introduction 249 9.2 Limitation and Mitigation Approaches of Biohydrogen Production 252 9.2.1 Physical Issues and Their Mitigation Approaches 252 9.2.1.1 Operating Temperature Issue and Its Control 252 9.2.
1.2 Hydraulic Retention Time (HRT) and Optimization 252 9.2.1.3 High Hydrogen Partial Pressure - Implication and Overcoming the Issue 253 9.2.1.4 Membrane Fouling Issues and Solutions 254 9.
2.2 Biological Issues and Their Mitigation Approaches 256 9.2.2.1 Start-Up Issue and Improvement Through Bioaugmentation 256 9.2.2.2 Biomass Washout Issue and Solution Through Cell Immobilization 256 9.
2.3 Chemical Issues and Their Mitigation Approaches 257 9.2.3.1 pH Variation and Its Regulation 257 9.2.3.2 Limiting Nutrient Loading and Optimization 257 9.
2.3.3 Inhibitor Secretion and Its Control 258 9.2.3.4 Byproduct Formation and Its Exploitation 260 9.2.4 Economic Issues and Ways to Optimize Cost 260 9.
3 Conclusion and Future Direction 265 Acknowledgements 266 References 266 10 Continuous Production of Clean Hydrogen from Wastewater by Microbial Usage 277 P. Satishkumar, Arun M. Isloor and Ramin Farnood 10.1 Introduction 278 10.2 Wastewater for Biohydrogen Production 279 10.3 Photofermentation 281 10.3.1 Continuous Photofermentation 283 10.
3.2 Factors Affecting Photofermentation Hydrogen Production 286 10.3.2.1 Inoculum Condition and Substrate Concentration 286 10.3.2.2 Carbon and Nitrogen Source 287 10.
3.2.3 Temperature 288 10.3.2.4 pH 288 10.3.2.
5 Light Intensity 288 10.3.2.6 Immobilization 290 10.4 Dark Fermentation 291 10.4.1 Continuous Dark Fermentation 292 10.4.
2 Factors Affecting Hydrogen Production i.