I. The Electromagnetic Field and Maxwell''s Equations.- 1. Mathematical Preliminaries.- 1.1. Introduction.- 1.
2. The Vector Notation.- 1.3. Vector Derivation.- 1.3.1.
The Nabla (?) Operator.- 1.3.2. Definition of the Gradient, Divergence, and Curl.- 1.4. The Gradient.
- 1.4.1. Example of Gradient.- 1.5. The Divergence.- 1.
5.1. Definition of Flux.- 1.5.2. The Divergence Theorem.- 1.
5.3. Conservative Flux.- 1.5.4. Example of Divergence.- 1.
6. The Curl.- 1.6.1. Circulation of a Vector.- 1.6.
2. Stokes'' Theorem.- 1.6.3. Example of Curl.- 1.7.
Second Order Operators.- 1.8. Application of Operators to More than One Function.- 1.9. Expressions in Cylindrical and Spherical Coordinates.- 2.
The Electromagnetic Field and Maxwell''s Equations.- 2.1. Introduction.- 2.2. Maxwell''s Equations.- 2.
2.1. Fundamental Physical Principles of the Electromagnetic Field.- 2.2.2. Point Form of the Equations.- 2.
2.3. The Equations in Vacuum.- 2.2.4. The Equations in Media with ?=?0and ?=?0.- 2.
2.5. The Equations in General Media.- 2.2.6. The Integral Form of Maxwell''s Equations.- 2.
3. Approximations to Maxwell''s Equations.- 2.4. Units.- 3. Electrostatic Fields.- 3.
1. Introduction.- 3.2. The Electrostatic Charge.- 3.2.1.
The Electric Field.- 3.2.2. Force on an Electric Charge.- 3.2.3.
The Electric Scalar Potential V.- 3.3. Nonconservative Fields: Electromotive Force.- 3.4. Refraction of the Electric Field.- 3.
5. Dielectric Strength.- 3.6. The Capacitor.- 3.6.1.
Definition of Capacitance.- 3.6.2. Energy Stored in a Capacitor.- 3.6.3.
Energy in a Static, Conservative Field.- 3.7. Laplace''s and Poisson''s Equations in Terms of the Electric Field.- 3.8. Examples.- 3.
8.1. The Infinite Charged Line.- 3.8.2. The Charged Spherical Half-Shell.- 3.
8.3. The Spherical Capacitor.- 3.8.4. The Spherical Capacitor with Two Dielectric Layers.- 3.
9. A Brief Introduction to the Finite Element Method: Solution of the Two-Dimensional Laplace Equation.- 3.9.1. The Finite Element Technique for Division of a Domain.- 3.9.
2. The Variational Method.- 3.9.3. A Finite Element Program.- 3.9.
4. Example for Use of the Finite Element Program.- 3.10. Tables of Permittivities, Dielectric Strength, and Conductivities.- 4. Magnetostatic Fields.- 4.
1. Introduction.- 4.2. Maxwell''s Equations in Magnetostatics.- 4.2.1.
The Equation ?×H=J.- 4.2.2. The Equation ?*B=0.- 4.2.3.
The Equation ?×E=0.- 4.3. The Biot-Savart Law.- 4.4. Boundary Conditions for the Magnetic Field.- 4.
5. Magnetic Materials.- 4.5.1. Diamagnetic Materials.- 4.5.
2. Paramagnetic Materials.- 4.5.3. Ferromagnetic Materials.- 4.5.
4. Permanent Magnets.- 4.6. The Analogy between Magnetic and Electric Circuits.- 4.7. Inductance and Mutual Inductance.
- 4.7.1. Definition of Inductance.- 4.7.2. Energy in a Linear System.
- 4.7.3. The Energy Stored in the Magnetic Field.- 4.8. Examples.- 4.
8.1. Calculation of Field Intensity and Inductance of a Long Solenoid.- 4.8.2. Calculation of H for a Circular Loop.- 4.
8.3. Field of a Rectangular Loop.- 4.8.4. Calculation of Inductance of a Coaxial Cable.- 4.
8.5. Calculation of the Field Inside a Cylindrical Conductor.- 4.8.6. Calculation of the Magnetic Field Intensity in a Magnetic Circuit.- 4.
8.7. Calculation of the Magnetic Field Intensity of a Saturated Magnetic Circuit.- 4.8.8. Magnetic Circuit Incorporating Permanent Magnets.- 4.
9. Laplace''s Equation in Terms of the Magnetic Scalar Potential.- 4.10. Properties of Soft Magnetic Materials.- 5. Magnetodynamic Fields.- 5.
1. Introduction.- 5.2. Maxwell''s Equations for the Magnetodynamic Field.- 5.3. Penetration of Time Dependent Fields in Conducting Materials.
- 5.3.1. The Equation for H.- 5.3.2. The Equation for B.
- 5.3.3. The Equation for E.- 5.3.4. The Equation for J.
- 5.3.5. Solution of the Equations.- 5.4. Eddy Current Losses in Plates.- 5.
5. Hysteresis Losses.- 5.6. Examples.- 5.6.1.
Induced Currents Due to Change in Induction.- 5.6.2. Induced Currents Due to Changes in Geometry.- 5.6.3.
Inductive Heating of a Conducting Block.- 5.6.4. Effect of Movement of a Magnet Relative to a Flat Conductor.- 5.6.5.
Visualization of Penetration of Fields as a Function of Frequency.- 5.6.6. The Voltage Transformer.- 6. Interaction between Electromagnetic and Mechanical Forces.- 6.
1. Introduction.- 6.2. Force on a Conductor.- 6.3. Force on Moving Charges: The Lorentz Force.
- 6.4. Energy in the Magnetic Field.- 6.5. Force as Variation of Energy (Virtual Work).- 6.6.
The Poynting Vector.- 6.7. Maxwell''s Force Tensor.- 6.8. Examples.- 6.
8.1. Force between Two Conducting Segments.- 6.8.2. Torque on a Loop.- 6.
8.3. The Hall Effect.- 6.8.4. The Linear Motor and Generator.- 6.
8.5. Attraction of a Ferromagnetic Body.- 6.8.6. Repulsion of a Diamagnetic Body.- 6.
8.7. Magnetic Levitation.- 6.8.8. The Magnetic Brake.- 7.
Wave Propagation and High-Frequency Electromagnetic Fields.- 7.1. Introduction.- 7.2. The Wave Equation and Its Solution.- 7.
2.1. The Time Dependent Equations.- 7.2.2. The Time Harmonic Wave Equations.- 7.
2.3. Solution of the Wave Equation.- 7.2.4. Solution for Plane Waves.- 7.
2.5. The One-Dimensional Wave Equation in Free Space and Lossless Dielectrics.- 7.3. Propagation of Waves in Materials.- 7.3 1.
Propagation of Waves in Lossy Dielectrics.- 7.3.2. Propagation of Plane Waves in Low-Loss Dielectrics.- 7.3.3.
Propagation of Plane Waves in Conductors.- 7.3.4. Propagation in a Conductor: Definition of the Skin Depth.- 7.4. Polarization of Plane Waves.
- 7.5. Reflection, Refraction, and Transmission of Plane Waves.- 7.5.1. Reflection and Transmission at a Lossy Dielectric Interface: Normal Incidence.- 7.
5.2. Reflection and Transmission at a Conductor Interface: Normal Incidence.- 7.5.3. Reflection and Transmission at a Finite Conductivity Conductor Interface.- 7.
5.4. Reflection and Transmission at an Interface: Oblique Incidence.- 7.5.5. Oblique Incidence on a Conducting Interface: Perpendicular Polarization.- 7.
5.6. Oblique Incidence on a Conducting Interface: Parallel Polarization.- 7.5.7. Oblique Incidence on a Dielectric Interface: Perpendicular Polarization.- 7.
5.8. Oblique Incidence on a Dielectric Interface: Parallel Polarization.- 7.6. Waveguides.- 7.6.
1. TEM, TE, and TM Waves.- 7.6.2. TEM Waves.- 7.6.
3. TE Waves.- 7.6.4. TM Waves.- 7.6.
5. Rectangular Waveguides.- 7.6.6. TM Modes in Waveguides.- 7.6.
7. TE Modes in Waveguides.- 7.7. Cavity Resonators.- 7.7.1.
TM and TE Modes in Cavity Resonators.- 7.7.2. TE Modes in a Cavity.- 7.7.3.
Energy in a Cavity.- 7.7.4. Quality Factor of a Cavity Resonator.- 7.7.5.
Coupling to Cavities.- II. Introduction to the Finite Element Method in Electromagnetics.- 8. Introduction to the Finite Element Method.- 8.1. Introduction.
- 8.2. The Galerkin Method -- Basic Concepts.- 8.3. The Galerkin Method -- Extension to 2D.- 8.3.
1. The Boundary Conditions.- 8.3.2. Calculation of the 2D Elemental Matrix.- 8.4.
The Variational Method -- Basic Concepts.- 8.5. The Variational Method -- Extension to 2D.- 8.5.1. The Variational Formulation.
- 8.5.2. Calculation of the 2D Elemental Matrix.- 8.6. Generalization of the Finite Element Method.- 8.
6.1. High-Order Finite Elements: General.- 8.6.2. High-Order Finite Elements: Notation.- 8.
6.3. High-Order Finite Elements: Implementation.- 8.6.4. Continuity of Finite Elements.- 8.
6.5. Polynomial Basis.- 8.6.6. Transformation of Quantities -- the Jacobian.- 8.
6.7. Evaluation of the Integrals.- 8.7. Numerical Integration.- 8.7.
1. Evaluation of the Integrals.- 8.7.2. Basic Principles of Numerical Integration.- 8.7.
3. Accuracy and Errors in Numerical Integration.- 8.8. Some Specific Finite Elements.- 8.8.1.
1D Elements.- 8.8.2. 2D Elements.- 8.8.3.
3D Elements.- 8.9. Coupling Different Finite Elements; Infinite Elements.- 8.9.1. Coupling Different Types of Finite Elements.
- 8.9.2. Infinite Elements.- 8.10. Calculation of Some Terms in Poisson''s Equation.- 8.
10.1. The Stiffness Matrix.- 8.10.2. Evaluation of the Second Term in Eq. (8.
130).- 8.10.3. Evaluation of the Third Term in Eq. (8.130).- 8.
10.4. Evaluation of the Source Term.- 8.11. A Simplified 2D Second-Order Finite Element Program.- 8.11.
1. The Problem to Be Solved.- 8.11.2. The Discretized Domain.- 8.11.
3. The Finite Element Program.- 9. The Variational Finite Element Method: Some Static Applications.- 9.1. Introduction.- 9.
2. Some Static Applications.- 9.2.1. Electrostatic Fields: Dielectric Materials.- 9.2.
2. Stationary Currents: Conducting Materials.- 9.2.3. Magnetic Fields: Scalar Potential.- 9.2.
4. The Magnetic Field: Vector Potential.- 9.2.5. The Electric Vector Potential.- 9.3.
The Variational Method.- 9.3.1. The Variational Formulation.- 9.3.2.
Functionals Involving Scalar Potentials.- 9.3.3. The Vector Potential Functionals.- 9.4. The Finite Element Method.
- 9.5. Application of Finite Elements with the Variational Method.- 9.5.1. Application to the Electrostatic Field.- 9.
5.2. Application to the Case of Stationary Currents.- 9.5.3. Application to the Magnetic Field: Scalar Potential.- 9.
5.4. Application to the Magnetic Field: Vector Potential.- 9.5.5. Application to the Electric Vector Potential.- 9.
6. Assembly of the Matrix System.- 9.7. Axi-Symmetric Applications.- 9.8. Nonlinear Applications.
- 9.8.1. Method of Successive Approximation.- 9.8.2. The Newton-Raphson Method.
- 9.9. The Three-Dimensional Scalar Potential.- 9.9.1. The First-Order Tetrahedral Element.- 9.
9.2. Application of the Variational Method.- 9.9.3. Modeling of 3D Permanent Magnets.- 9.
10. Examples.- 9.10.1. Calculation of Electrostatic Fields.- 9.10.
2. Calculation of Static Currents.- 9.10.3. Calculation of the Magnetic Field: Scalar Potential.- 9.10.
4. Calculation of the Magnetic Field: Vector Potential.- 9.10.5. Three-Dimensional Calculation of Fields of Permanent Magnets.- 10. Galerkints Residual Method: Applications to Dynamic Fields.
- 10.1. Introduction.- 10.2. Application to Magnetic Fields in Anisotropic Media.- 10.3.
Application to 2D Eddy Current Problems.- 10.3.1. First-Order Element in Local Coordinates.- 10.3.2.
The.