1. Green and Sustainable Advanced Materials: Overview Tanvir Arfin, Arshiya Tarannum and Kamini Sonawane. 1 1.1. History. 1 1.2. Biomaterials.
2 1.2.1. Dextran. 2 1.2.1.1.
Chemical Structure. 2 1.2.1.2. Properties. 2 1.2.
1.3. Applications. 3 1.2.2. Cellulose. 3 1.
2.2.1. Chemical Structure. 4 1.2.2.2.
Properties. 4 1.2.2.3. Application 1.2.3.
Gelatine. 4 1.2.3.1. Chemical Structure. 5 1.2.
3.2. Properties. 5 1.2.3.3. Application.
5 1.2.4. Alginate. 6 1.2.4.1.
Chemical Structure. 6 1.2.4.2. Properties. 7 1.2.
4.3. Application. 7 1.2.5. Chitin. 7 1.
2.5.1. Chemical Structure. 8 1.2.5.2.
Properties. 8 1.2.5.3. Application. 8 1.2.
6. Chitosan. 8 1.2.6.1. Chemical Structure. 9 1.
2.6.2. Properties. 9 1.2.6.3.
Application. 9 1.2.7. Pollulan. 9 1.2.7.
1. Chemical Structure. 9 1.2.7.2. Properties. 10 1.
2.7.3. Applications. 10 1.2.8. Curdlan.
10 1.2.8.1. Chemical Structure. 10 1.2.8.
2. Properties. 11 1.2.8.3. Application. 11 1.
2.9. Lignin. 11 1.2.9.1. Chemical Structure.
11 1.2.9.2. Properties. 12 1.2.9.
3. Application. 12 1.2.10. Xanthan Gum. 13 1.2.
10.1. Chemical Structure. 13 1.2.10.2. Properties.
14 1.2.10.3. Applications. 14 1.2.11.
Hydrogels. 14 1.2.11.1. Chemical Structure. 14 1.2.
11.2. Properties:. 14 1.2.11.3. Application.
15 1.2.12. Xylan. 15 1.2.12.1.
Chemical Structure. 16 1.2.12.2. Properties. 16 1.2.
12.3. Application. 16 1.2.13. Arabic Gum. 17 1.
2.13.1. Chemical Structure. 17 1.2.13.2.
Properties. 17 1.2.13.3. Applications. 18 1.3.
CdS. 18 1.4. Carbon Nanotube. 19 1.5. Fe Containing Nanomaterial. 20 1.
6. Graphene. 20 1.7. Graphene Oxide. 22 1.8. Inulin.
23 1.9. Pectin. 24 1.10. Metal Oxide. 25 1.10.
1 TiO2. 25 1.10.2 ZnO. 26 1.10.3 CeO2. 26 1.
11. Polymer. 27 1.11.1. Polystyrene. 27 1.11.
2. PANI. 28 1.11.3 Starch. 28 1.11.4 Dendrimer.
28 1.12 Bentonite. 29 1.13 Conclusion. 29 References. 30 2. Characterization of Green and Sustainable Advanced Materials. 35 Pintu Pandit and Gayatri T.
N. 2.1. Introduction. 36 2.2. Characterization of Advanced Materials. 38 2.
3. Physical Characterization of Advanced Materials. 39 2.3.1. Scanning Electron Microscopy. 41 2.3.
2. Energy-dispersive X-ray Spectroscopy. 41 2.3.3. Transmission Electron Microscopy. 42 2.3.
4. X-ray Diffraction. 43 2.3.5. Ultraviolet Protection. 44 2.3.
6. Thermal Characterization (TGA, DTA, DSC, Cone Calorimetry). 44 2.3.6.1. Thermogravimetric Analysis. 45 2.
3.6.2. Differential Thermal Analysis. 47 2.3.6.3.
Differential Scanning Calorimetric Analysis. 47 2.3.6.4. Cone Calorimetry. 48 2.3.
7. Characterization for Mechanical Properties of Advanced Materials. 49 2.4. Chemical Characterization of Advanced Materials. 50 2.4.1.
EXAFS, XPS, and AES. 51 2.4.2. ICP-MS, ICP OES, and SIMS. 55 2.4.3.
LC/GC/FTICR-MS. 57 2.4.4. NMR. 58 2.4.5.
FTIR and Raman Spectroscopy. 59 2.5. Conclusions. 61 References. 62 3. Green and Sustainable Advanced Biopolymeric and Biocomposite Materials. 67 T.
P. Mohan and K. Kanny 3.1. Introduction. 67 3.2. Classification of Green Materials.
68 3.3. Biopolymers. 69 3.4. Natural Fillers. 70 3.5.
Natural Fibers. 72 3.6. Biocomposites. 73 3.6.1. Thermoplastic Starch Based Composites.
73 3.6.2. Polylactic Acid (PLA) Based Composites. 74 3.6.3. Cellulose Based Composites.
74 3.6.4. Plant Oil Based Composites. 75 3.6.5. Polymer--Polymer Blends-Based Composites.
76 3.7. Merits and Demerits of Green Materials. 76 3.8. Recent Progress in Improvement of Material Properties. 78 3.8.
1. Hybridization. 79 3.9. Current Applications of Biocomposites and Biopolymers. 79 3.9.1.
Green Fibers and their Potential in Diversified Applications. 80 3.9.2. Textile Applications. 80 3.9.3.
Green Fibers for Pulp. 81 3.9.4. Green Fiber for Biocomposites, Based on Lignocelluloses. 82 3.9.5.
Applications of Composites. 83 3.9.6. Particleboards. 83 3.10. Futuristic Applications of Biocomposites and Biopolymers.
83 3.10.1. Development Prospects for Plant Fiber/Polymer Composites: 85 3.11. Conclusion. 85 References. 86 4.
Green and Sustainable Advanced Nanomaterials. 93 Alaa K. H. Al-Khalaf and Falah H. Hussein 4.1. Introduction. 93 4.
1.1. Green Chemistry and Nanoscale Science. 94 4.1.2. Examples of Such Green Nanoparticles. 94 4.
1.2.1. Beta-Carotene Molecule. 94 4.1.2.2.
Anthocyanin Molecule. 96 4.1.2.3. Hydro Gel. 99 4.2.
Applications of Natural NanoOrganic Materials. 100 4.2.1. Application of Beta-Carotene. 100 4.2.2.
Application of Anthocyanin. 100 4.2.3. Application of Hydrogel. 101 4.3. Conclusion.
104 References. 105 5. Biogenic Approaches for SiO2 Nanostructures: Exploring the Sustainable Platform of Nanofabrication. 107 M. Hariram, P. Vishnukumar and S. Vivekanandhan 5.1.
Introduction. 108 5.2. Synthesis of SiO2 Nanostructures. 109 5.2.1. Physical Processes.
110 5.2.2. Chemical Processes. 111 5.2.3. Template Assisted Process.
114 5.3. Bio-Mediated Sustainable Processes for SiO2 Nanostructures. 115 5.3.1. Bacterial Assisted Synthesis Process. 116 5.
3.2. Fungal Mediates Biogenic Synthesis Process. 118 5.3.3. Plant Based Synthesis Process. 120 5.
3.4. Biomolecular Template Assisted Synthetic Process. 123 5.4. Biogenic SiO2 based Doped, Functionalized and Composite Nanostructures. 125 5.4.
1. Biogenic Synthesis of Doped and Functionalized SiO2 Nanostructures. 126 5.4.2. Biogenic SiO2 Nanocomposites. 127 5.5.
Applications of Bio-fabricated SiO2 Nanoparticles. 129 5.5.1. Catalysis. 130 5.5.2.
Biomedical. 130 5.5.3. Energy and Environment. 131 5.6. Conclusions.
131 Acknowledgements. 132 References. 132 6. Green and Sustainable Advanced Composite Materials. 143 Yahya F. Al-Khafaji and Falah H. Hussein. 6.
1. Introduction. 143 6.2. Applications of Polymers. 145 6.3. The Problems of Synthetic Polymers.
145 6.4. Why Biodegradable Polymers. 147 6.5. Biodegradable Polymers. 147 6.6.
Copolymers. 147 6.7. Examples of Biodegradable Polymers is Polyesters. 148 6.7.1. Aliphatic Polyesters Polylactide PLA, PolYcaprolactone PCL and Polyvalerolactone PVL.
148 6.7.2. Preparation of Polyesters. 148 6.7.2.1.
Polycondensation. 149 6.7.2.2. Ring opening Polymerization (ROP). 149 6.7.
3. Mechanism of ROP. 150 6.7.3.1. Cationic Ring Opening Polymerization (CROP). 150 6.
7.3.2. AnionicRring Opening Polymerization (AROP). 150 6.7.3.3.
Coordination-Insertion Polymerization. 150 6.8. Conclusion. 152 References. 152 7. Design and Processing Aspects of Polymer and Composite Materials. 155 Hafiz M.
N. Iqbal, Muhammad Bilal and Tahir Rasheed 7.1. Introduction. 156 7.2. Design and Processing. 158 7.
3. Natural Polymers and Their Applied Potentialities. 158 7.3.1. Alginate - Physiochemical and Structural Aspects. 158 7.3.
2. Carrageenan - Physiochemical and Structural Aspects. 161 7.3.3. Cellulose - Physiochemical and Structural Aspects. 162 7.3.
4. CS - Physiochemical and Structural Aspects. 163 7.3.5. Dextran - Physiochemical and Structural Aspects 7.3.6.
Guar Gum - Physiochemical and Structural Aspects. 166 7.3.7. Xanthan - Physiochemical and Structural Aspects. 167 7.4. Synthetic Polymers and Their Applied Potentialities.
169 7.4.1. PAA - Physiochemical and Structural Aspects. 169 7.4.2. PAM - Physiochemical and Structural Aspects.
170 7.4.3. PVA - Physiochemical and Structural Aspects. 171 7.4.4. PEG - Physiochemical and Structural Aspects.
171 7.4.5. Poly(vinyl pyrrolidone) - Physiochemical and Structural Aspects. 172 7.4.6. PLA - Physiochemical and Structural Aspects.
172 7.5. Materials-based Biocomposites. 173 7.6. Concluding Remarks and Future Considerations. 179 Conflict of Interest. 180 Acknowledgements.
180 References. 180 8. Seaweed-Based Binder in Wood Composites. 191 Kang Chiang Liew and Nur Syafiqah Nadiah Abdul Ghani 8.1. Introduction. 191 8.2.
Methods and Techniques. 193 8.2.1. Preparation of Raw Material. 193 8.2.2.
Seaweed Adhesive Preparation. 193 8.2.3. Blending and Mat Forming. 193 8.2.4.
Conditioning. 194 8.2.5. Data Analysis. 195 8.3. Results and Discussion.
195 8.3.1. Overview. 195 8.3.2. The Physical Properties of Acacia Mangium Particleboard.
195 8.3.2.2. Density. 197 8.3.3.
Dimensional Stability of Acacia Mangium Particleboard. 199 8.3.2.1. Moisture Content. 199 8.3.
3.2. Thickness Swelling. 201 8.3.4. The Mechanical Properties of Acacia Mangium Particleboard. 204 8.
3.3.1. Water Absorption. 204 8.3.4.2.
Modulus of Rupture. 205 8.3.4.3. Internal Bonding. 207 8.4.
Conclusion. 208 References. 209 9. Green and Sustainable Textile Mate.