Preface xv 1 On the DC Microgrids Protection Challenges, Schemes, and Devices - A Review 1 Mohammed H. Ibrahim, Ebrahim A. Badran and Mansour H. Abdel-Rahman 1.1 Introduction 2 1.2 Fault Characteristics and Analysis in DC Microgrid 4 1.3 DC Microgrid Protection Challenges 7 1.3.
1 Low Inductance of DC System 7 1.3.2 Fast Rise Rate of DC Fault Current 7 1.3.3 Difficulties of Overcurrent (O/C) Relays Coordination 7 1.3.4 Fault Detection and Location 8 1.3.
5 Arcing Fault Detection and Clearing 10 1.3.6 Short-Circuit (SC) Analysis and Change of Its Level 13 1.3.7 Non-Suitability of AC Circuit Breakers (ACCBs) 16 1.3.8 Inverters Low Fault Current Capacity 17 1.3.
9 Constant Power Load (CPL) Impact 17 1.3.10 Grounding 18 1.4 DC Microgrid Protection Schemes 21 1.4.1 The Differential Protection-Based Strategies 25 1.4.2 The Voltage-Based Protection Strategies 27 1.
4.3 The Adaptive Overcurrent Protection Schemes 28 1.4.4 Impedance-Based Protection Strategy (Distance Protection) 29 1.4.5 Non-Conventional Protection Schemes (Data-Based Protection Scheme) 32 1.5 DC Microgrid Protective Devices (PDs) 34 1.5.
1 Z-Source DC Circuit Breakers (ZSB) 35 1.5.2 Hybrid DC Circuit Breakers (HCB) 38 1.5.3 Solid State Circuit Breakers (SSCBs) 42 1.5.4 Arc Fault Current Interrupter (AFCI) 45 1.5.
5 Fuses 47 1.6 Conclusions 48 References 50 2 Control Strategies for DC Microgrids 63 Bhabani Kumari Choudhury and Premalata Jena 2.1 Introduction: The Concept of Microgrids 63 2.1.1 DC Microgrids 64 2.2 Introduction: The Concept of Control Strategies 65 2.2.1 Basic Control Schemes for DC MGs 66 2.
2.1.1 Centralized Control Strategy 66 2.2.1.2 Decentralized Controller 67 2.2.1.
3 Distributed Control 68 2.2.2 Multilevel Control 68 2.2.2.1 Primary Control 69 2.2.2.
2 Secondary Control 73 2.2.2.3 Tertiary Control 74 2.2.2.4 Current Sharing Loop 74 2.2.
2.5 Microgrid Central Controller (MGCC) 74 2.3 Control Strategies for DGs in DC MGs 76 2.3.1 Control Strategy for Solar Cell in DC MGs 76 2.3.1.1 Control Strategy for Wind Energy in DC MGs 77 2.
3.1.2 Control Strategy for Fuel Cell in DC MGs 77 2.3.1.3 Control Strategy for Energy Storage System in DC MGs 78 2.4 Conclusions and Future Scopes 79 References 80 3 Protection Issues in DC Microgrids 83 Bhabani Kumari Choudhury and Premalata Jena 3.1 Introduction 83 3.
1.1 Protection Challenge 84 3.1.1.1 Arcing and Fault Clearing Time 84 3.1.1.2 Stability 85 3.
1.1.3 Multiterminal Protections 85 3.1.1.4 Ground Fault Challenges 85 3.1.1.
5 Communication Challenges 86 3.1.2 Effect of Constant Power Loads (CPLs) 86 3.2 Fault Detection in DC MGs 87 3.2.1 Principles and Methods of Fault Detection 87 3.2.1.
1 Voltage Magnitude-Based Detection 87 3.2.1.2 Current Magnitude-Based Detection 88 3.2.1.3 Impedance Estimation Method 88 3.2.
1.4 Power Probe Unit (PPU) Method 88 3.3 Fault Location 92 3.3.1 Passive Approach 92 3.3.1.1 Traveling Wave-Based Scheme 92 3.
3.1.2 Differential Fault Location 93 3.3.1.3 Local Measurement-Based Fault Location 93 3.3.2 Active Approach for Fault Location 94 3.
3.2.1 Injection-Based Fault Location 94 3.4 Islanding Detection (ID) 94 3.4.1 Types of IDSs 95 3.4.2 Passive Detection Schemes (PDSs) for DC MGs 96 3.
4.3 Active Detection Schemes (ADS) for DC MGs 96 3.5 Protection Coordination Strategy 97 3.6 Conclusion and Future Research Scopes 97 References 97 4 Dynamic Energy Management System of Microgrid Using AI Techniques: A Comprehensive & Comparative Study 101 Priyadarshini Balasubramanyam and Vijay K. Sood Nomenclature 102 4.1 Introduction 103 4.1.1 Background and Motivation 103 4.
1.2 Prior Work 103 4.1.3 Contributions 104 4.1.4 Layout of the Chapter 104 4.2 Problem Statement 104 4.3 Mathematical Modelling of Microgrid 105 4.
3.1 Cost Functions 106 4.3.1.1 Diesel Generator 106 4.3.1.2 Solar Generation 106 4.
3.1.3 Wind Generation Unit 106 4.3.1.4 Energy Storage System (ESS) 107 4.3.1.
5 Transaction with Utility 108 4.3.2 Objective Function 109 4.3.3 Constraints 109 4.4 Optimization Algorithm 110 4.4.1 Heuristic-Based Genetic Algorithm (GA) 110 4.
4.2 Pattern Search Algorithm (PSA) 111 4.5 Results 113 4.6 Conclusion 118 References 118 5 Energy Management Strategies Involving Energy Storage in DC Microgrid 121 S. K. Rai, H. D. Mathur and Sanjeevikumar Padmanaban 5.
1 Introduction 121 5.2 Literature Review 123 5.2.1 Classic Approaches of EMS 124 5.2.2 Meta-Heuristic Approach of EMS 129 5.2.3 Artificial Intelligence Approach of EMS 134 5.
2.4 Model Predictive, Stochastic and Robust Programming Approach of EMS 139 5.3 Case Study 142 5.3.1 Energy Management System 144 5.3.2 Objective Functions 144 5.3.
3 Result and Discussion 145 5.4 Conclusion 151 References 151 6 A Systematic Approach for Solar and Hydro Resource Assessment for DC Microgrid Applications 159 Sanjay Kumar, Nikita Gupta, Vineet Kumar and Tarlochan Kaur 6.1 Introduction 160 6.1.1 Micro Hydro and Solar PV 162 6.1.2 Renewable Energy for Rural Electrification in Indian Perspective 162 6.1.
3 Solar Resource Assessment 163 6.1.4 Hydro Resource Assessment 166 6.1.5 Demand Assessment 167 6.2 Methodology 168 6.2.1 Data Collection 168 6.
2.1.1 Meteorological and Geographical Data 168 6.2.1.2 Discharge Data for Hydro Potential Estimation 168 6.3 Result and Discussion 172 6.3.
1 ANN Architecture 172 6.3.2 Hydro Resource Estimation 176 6.4 Conclusion 178 References 179 7 Secondary Control Based on the Droop Technique for Power Sharing 183 Waner W.A.G. Silva, Thiago R. de Oliveira, Rhonei P.
Santos and Danilo I. Brandao 7.1 Introduction 184 7.2 Voltage Deviation and Power Sharing Issues in Droop Technique 186 7.2.1 Approaches for Correcting Power and Current Sharing 190 7.2.2 Hybrid Secondary Control: Distributed Power Sharing and Decentralized Voltage Restoration 197 7.
2.2.1 Dynamics and Convergence of the Power Sharing Correction 200 7.2.2.2 Communication Delays in Consensus-Based Algorithm 203 7.2.2.
3 Secondary Control Modeling 204 7.2.2.4 Computational and Experimental Validation 208 7.2.3 Secondary Level Control Based on Unique Voltage-Shifting ( vs ) 215 7.2.3.
1 Power Sharing and Average Voltage Convergence Analysis 218 7.2.3.2 Secondary Control Level Modeling 223 7.2.3.3 Computational and Experimental Validation 226 7.3 Design and Implementation of the Communication System 230 7.
4 Conclusions 234 References 235 8 Dynamic Analysis and Reduced-Order Modeling Techniques for Power Converters in DC Microgrid 241 Divya Navamani J., Lavanya A., Jagabar Sathik, M.S. Bhaskar and Vijayakumar K. 8.1 Introduction 242 8.2 Need of Dynamic Analysis for Power Converters 243 8.
3 Various Modeling Techniques 245 8.3.1 Analysis from Modeling Method 249 8.4 Reduce-Order Modeling 253 8.4.1 Faddeev Leverrier Algorithm 253 8.4.1.
1 Procedure for Faddeev Leverrier Algorithm 253 8.4.1.2 Illustrative Example with Switched- Inductor-Based Quadratic Boost Converter 254 8.4.2 Order Reduction of Transfer Function 257 8.4.3 Techniques for Model Order Reduction 257 8.
4.4 Pole Clustering Method 258 8.4.5 Procedure for Improved Pole Clustering Technique 258 8.4.5.1 Computation of Denominator Polynomial of Lower-Dimensional Model 259 8.4.
5.2 Computation of Numerator Polynomial of Lower-Dimensional Model 261 8.4.5.3 Design of Controller 261 8.5 Illustrative Example with the Power Converter 262 8.5.1 Derivation of the Denominator 263 8.
5.2 Derivation of the Numerator 264 8.6 Controllers for Power Converter 265 8.6.1 Need of Controller 265 8.6.2 Types of Controller 265 8.7 Conclusion 267 References 267 9 Matrix Converter and Its Probable Applications 273 Khaliqur Rahman 9.
1 Introduction 274 9.2 Classification of Matrix Converter 275 9.2.1 Classical Matrix Converter 277 9.2.2 Sparse Matrix Converter 277 9.2.3 Very Sparse Matrix Converter 277 9.
2.4 Ultra-Sparse Matrix Converter 278 9.3 Problems Associated with the MC and the Drives 280 9.3.1 Commutation Issues 280 9.3.2 Modulation Issues 280 9.3.
3 Common-Mode Voltage and Common-Mode Current Issues 280 9.3.4 Protection Issues 281 9.4 Control Techniques 282 9.5 Basic Components of the Matrix Converter Fed Drive System 283 9.6 Industrial Applications of Matrix Converter 289 9.7 Summary 294 References 294 10 Multilevel Converters and Applications 299 P. Prem, Jagabar Sathik and K.
T. Maheswari 10.1 Introduction 300 10.2 Multilevel Inverters 301 10.2.1 Multilevel Inverters vs. Two-Level Inverters 301 10.2.
2 Advantages of Multilevel Converters Based on Waveforms 303 10.2.3 Advantages of Multilevel Converters Based on Topology 304