Preface QUANTUM vs POST QUANTUM SECURITY: Algorithms and Design Technology Ch 1 INTRODUCTION 1.1 Motivation 1.2 Structure of the book Ch 2 CV QUANTUM KEY DISTRIBUTION 2.1 Fundamentals of CVQKD 2.1.1 Security of CVQKD protocols 2.2 Composable security proof for cv QKD 2.2.
1 Security Proof Overview 2.2.2. Quantum Key Distribution and Composable Security 2.2.3 Description of the CV QKD protocol 2.2.3.
1. State Preparation 2.2.3.2. Measurement 2.2.3.
3. Error correction 2.2.3.4. Parameter Estimation 2.2.3.
5. Privacy Amplification 2.2.4. Expected secret key rate 2.2.5 Analytical Tools 2.2.
5.1. Leftover Hash Lemma 2.2.5.2. Smooth minentropy of a conditional state 2.2.
5.3. Lower bound on the entropy of an i.i.d. variable 2.2.5.
4. Gaussian states and covariance matrices 2.2.6 Parameter Estimation in the protocol E_0 2.2.6 .1. Preliminaries 2.
2.6.2. Proofs related to the analysis of Parameter Estimation 2.2.6.3. Probability of the bad event 2.
2.6.4. Analysis of the Parameter Estimation 2.2.7 Security of the protocol E_0 against collective attacks 2.2.7.
1 A security proof against general attacks without active symmetrization 2.3 Composable security of two-way cv QKD 2.3.1 Overview of the protocol 2.3.2 Secret key rate of the twoway protocol 2.4 Security of cv QKD via a Gaussian de Finetti reduction 2.4.
1 Generalized SU(2,2) coherent states 2.4.2 Technical lemmas 2.4.3. Finite energy version of de Finetti theorem 2.4.4 Security proof for a modified CV QKD protocol 2.
4.5 Postelection technique 2.4.6 Security against collective attacks 2.4.7 Energy test 2.5 Secure Multi-party Quantum Computation 2.5.
1 MPQC Basics 2.5.2 Multiparty Quantum Computation: Definitions 2.5.3 System Model 2.5.4 Computation of Clifford and measurement 2.5.
5 Protocol: MPQC for general quantum circuits REFERENCES Ch 3 QKD OVER SUBOPTICAL BANDS: Towards Heterogenous Wireless & cv Quantum Networks 3.1 cv QKD with Adaptive Multicarrier Quadrature Division Modulation 3.1.1Multicarrier Quadrature Division Modulation 3.1.2 Adaptive Modulation Variance 3.1.3 Efficiency of AMQD Modulation 3.
2 QKD over THz Band 3.2.1 TERAHERTZ QKD: System Model 3.2.2 System performance in the Extended Terahertz range 3.2.3 Derivation of the secretkey rates 3.2.
4 Coherent Bidirectional TerahertzOptical Converter 3.2.5 Implementation 3.3 Quantum cryptography at wavelengths considerably longer than optical 3.3.1 Summary of analytical tools REFERENCE Ch 4 REINFORCEMENT LEARNING based QN PROTOCOLS 4.1 Quantum Network Protocols 4.1.
1 Summary of the analytical tools 4.1.2 Quantum Link Layer Protocol 4.1.3 Reinforcement Learning-based quantum decision processes 4.1.4 Quantum Networks REFERENCES Ch 5 QN STABILITY 5.1 Dynamic QN PROTOCOLS 5.
1.1 Dynamic random subgraphs 5.1.2 Dynamic Quantum states 5.1.3 Quantum Decision Processes for QN Protocols 5.1.4 Performance Measures 5.
1.5 Policy optimization 5.2 QN Stability 5.2.1 Stabi1ity of an entang1ed quantum network. REFERENCES Ch 6 SATELLITE QN 6.1 Elementary Link Generation with Satellites 6.2 Implementation Aspects of cv Satellite QN 6.
2.1 Uplink/Downlink FreeSpace Optical Channels 6.2.2 CV Quantum Systems in Satellite Networks 6.2.3 Continuous VariableQKD in Satellite Networks 6.2.4 Entanglement and CVQK Distribution in Satellite Networks 6.
2.5 Non-Gaussian CV Quantum Communication over Atmospheric Channels REFERENCES Ch 7 Q MEMORIES 7.1 System model. 7.2 Integrated Local Unitaries U_ML 7.2.1 Factorization Unitary U_ML=U_F U_CQT U_P U_CQT^+, 7.2.
1.1 Unitary U_F (U_ML=U_F U_CQT U_P U_CQT^+), 7.2.1.2 Unitary U_CQT (U_ML=U_FU_CQTU_P U_CQT^+), 7.2.1.3 Basis partitioning unitary U_P (U_ML=U_F U_CQT U_P U_CQT^+), 7.
2.1.4 Inverse quantum constant Q transform U_CQT^+ (U_ML=U_F U_CQT U_P U_CQT^+), 7.2.1.5 Inverse quantum DSTFT and quantum DFT REFERENCES Ch 8 Quantum Network Optimization 8.1 Algorithms 8.1.
1 The Quantum Alternating Operator Ansatz (QAOA) 8.1.2 QAOA Mappings: Strings 8.1.2.1 Example: MaxκColorableSubgraph 8.1.2.
2 Full QAOA Mapping 8.1.3 QAOA Mappings: Orderings and Schedules 8.1.4 QAOA mappings for a variety of NP optimization problems 8.1.4.1 BitFlip (X) Mixers 8.
1.4.2 ControlledBitFlip (Î_f (X)) Mixers 8.1.4.3 Mixers 8.1.4.
4 ControlledXY Mixers 8.1.4.5 Permutation Mixers 8.2 Multidomain Optimization of Quantum Network 8.2.1 QuantumDomain Optimization (QDO) 8.2.
2 ClassicalDomain Optimization (CDO) REFERENCES Ch 9 POSTQUANTUM CRYPTOGRAPHY 9.1 Overview of Post-Quantum Cryptosystems 9.1.2 Lattice based cryptography 9.1.3 Hash based cryptography 9.1.4 Code based cryptography 9.
2 Rainbow 9.2.1 Multivariate Public Key Cryptography 9.2.2 Rainbow Algorithm Specification 9.2.3 Key Generation Speed Up 9.2.
4 Resistance to Attacks 9.3 NTRU N-th degree Truncated polynomial Ring Units 9.3.1 Specification of NTRU Cryptosystem 9.3.2 Security of NTRU 9.4 LWE Cryptosystem 9.4.
1 Preliminaries 9.4.2 LWE Algorithm Variants 9.4.3 LWE Public Key Cryptosystem 9.5 BLISS (Bimodal Lattice Signature Scheme (BLISS) 9.5.1 BLISS: A Lattice Signature Scheme using Bimodal Gaussians 9.
5.2 Implementation of BLISS 9.6 Variants of Merkle Signature Scheme 9.6.1 The Winternitz Onetime Signature Scheme 9.6.2 The Merkle Signature Scheme 9.6.
3 CMSS 9.7 Lamport Signature 9.7.1 Improved Lamport onetime signature 9.8 McEllice Cryptosystem: Code-based cryptography 9.8.1 McEliece Cryptosystem Using Extended Golay Code 9.9 Niederreiter Cryptosystem 9.
9.1 Niederreiter cryptosystems and QuasiCyclic Codes 9.9.2 Subgroup K is indistinguishable 9.9.3 Fault Attack on the Niederreiter Cryptosystem 9.9.3.
1 Binary Goppa Codes 9.9.3.2 Binary Irreducible Goppa Cryptosystems 9.9.3.3 The BIGN Fault Injection Framework 9.9.
3.4 Constant and Quadratic Fault Injection Sequences 9.9.3.5 The BIGN Fault Attack Appendix 9.1 Key Generation for a SISBased Scheme REFERENCES Ch 10 QUANTUM CRYPTOGRAPHY 10.1 Discrete Variable Protocols 10.1.
1 Prepare and measure protocols 10.1.2 Countermeasures 10.1.3 Entanglementbased QKD 10.1.4 Twoway quantum communication 10.2 DeviceIndependent QKD 10.
2.1 The link between Bell violation and unpredictability 10.2.2 Performance bounds 10.2.3 Protocols for DIQKD 10.2.4 Implementation of DIQKD protocols 10.
3 ContinuousVariable QKD 10.3.1. Oneway CVQKD protocols 10.3.2. Twoway CVQKD protocols 10.4 Theoretical Models of Security 10.
4.1 Heisenberg''s uncertainty principle 10.5 Limits of PointtoPoint QKD 10.5.1 Adaptive protocols and twoway assisted capacities 10.5.2 General weakconverse upper bound 10.5.
3 LOCC simulation of quantum channels 10.5.4 Teleportation covariance and simulability 10.5.5 Strong and uniform convergence 10.5.6 Stretching of an adaptive protocol 10.5.
7 Upper bound simplification for twoway assisted capacities 10.5.8 Bounds for teleportationcovariant channels 10.5.9 Capacities for distillable channels 10.6 QKD Against a Bounded Quantum Memory 10.6.1 Entropic uncertainty relations 10.
6.2 Bounded quantum storage model 10.6.3 Quantum data locking Appendix 10.A: Formulas for Gaussian states Ch 11 IMPLEMENTATION EXAMPLES OF cv QKD 11.1 Effective Channel Model 11.2 Modelling Transceiver Component 11.3 Protocols 11.
4. SignaltoNoise Ratio 11.5 Holevo Information 11.6 Purification Attacks 11.7 Security Assumptions 11.8 Parameter Estimation 11.9 Noise Models 11.9.
1 Modulation Noise 11.9.2. PhaseRecovery Noise 11.9.3. Raman Noise 11.9.
4 CommonMode Rejection Ratio 11.9.5 Detection Noise 11.9.6 ADC Quantization Noise 11.6. Implementation Example 11.11 QKD Implementation at Terahertz Bands 11.
8.1 System Model 11.8.2 The Model of Noise and Eve''s Attack 11.8.3 Reconciliation 11.8.4 Secret Key Rate of ThzMCMCVQKD 11.
2 QKD Over Optical Backbone Networks 11.6.1 Preliminaries 11.6.2 System Model 11.6.3 Network Optimization 11.3 Quantum Receivers 11.
8.1 EA Classical Optical Communication System 11.8.2 Nonlinear Receivers 11.8.3 Joint Receivers 11.8.4 System Performance Ch 12 qubit PHYSICS 12.
1 Superconducting Qubits 12.1.1 Qubit Hamiltonian engineering 12.1.2.