Hybridized Technologies for the Treatment of Mining Effluents
Hybridized Technologies for the Treatment of Mining Effluents
Click to enlarge
Author(s): Fosso-Kankeu
ISBN No.: 9781119896425
Pages: 320
Year: 202308
Format: Trade Cloth (Hard Cover)
Price: $ 269.10
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xv 1 Passive Remediation of Acid Mine Drainage Using Phytoremediation: Role of Substrate, Plants, and External Factors in Inorganic Contaminants Removal 1 Nguegang Beauclair, Vhahangwele, Masindi, Titus Alfred Makudali Msagati and Tekere Memory 1.1 Introduction 2 1.2 Materials and Methods 4 1.2.1 Samples Collection and Characterization 4 1.2.2 Acquisition of the Plants and Reagents 5 1.2.


3 Characterization of Samples 5 1.2.4 Quality Assurance and Quality Control (QA/QC) 5 1.2.5 Wetlands Design and Optimization Experiments 6 1.2.5.1 Wetland Design 6 1.


2.5.2 Wetland Experimental Procedure and Assays 6 1.2.5.3 The Performance of the System 8 1.2.5.


4 Determination of the Translocation and Distribution of Metals 9 1.2.5.5 Geochemical Modeling 10 1.3 Results and Discussion 10 1.3.1 Remediation Studies 10 1.3.


1.1 Effect of FWS-CW on pH 10 1.3.1.2 Effect of FWS-CW on Electrical Conductivity 11 1.3.1.3 Effect of FWS-CW on Sulphate Concentration 12 1.


3.1.4 Effect of FWS-CW on Metal Concentration 13 1.3.1.5 Role of Substrate in Metals Accumulation 15 1.3.1.


6 Removal Efficiency of Metals and Sulphate in the Experimental System 17 1.3.2 Tolerance Index, Bioaccumulation, and Translocation Effects 18 1.3.2.1 Tolerance Index 19 1.3.2.


2 Bioconcentration Factor 19 1.3.2.3 Translocation Factor 21 1.3.2.4 Metal Translocation and Distribution 22 1.3.


3 Metals Concentration in Substrate and Vetiveria zizanioides Before and After Contact With AMD 23 1.3.4 Partitioning of Metals Between Substrate, Plants, and External Factors 24 1.3.5 Characterization of Solid Samples 26 1.3.5.1 Elemental Composition of the Substrate 26 1.


3.5.2 Mineralogical Composition of the Substrate 27 1.3.5.3 Analysis of Vetiveria zizanioides Roots for Functional Group 28 1.3.5.


4 Scanning Electron Microscope-Electron Dispersion Spectrometry of Vetiveria zizanioides Roots 29 1.4 Chemical Species for Untreated and AMD-Treated Wetland With FWS-CW 31 1.5 Limitation of the Study 33 1.6 Conclusions and Recommendations 33 References 34 2 Recovery of Strategically Important Heavy Metals from Mining Influenced Water: An Experimental Approach Based on Ion-Exchange 41 Janith Abeywickrama, Marlies Grimmer and Nils Hoth Abbreviations 42 2.1 Introduction 42 2.2 Ion Exchange in Mine Water Treatment 44 2.2.1 Ion Exchange Terminology 44 2.


2.2 Fundamentals of Ion Exchange Process 46 2.2.3 Selectivity of Ion-Exchange Materials 48 2.2.4 Chelating Cation Exchangers 49 2.3 Laboratory-Scale Ion Exchange Column Experiments 51 2.3.


1 General Introduction to the Setup 51 2.3.2 Column Loading Process 53 2.3.3 Mass Transfer Zone 56 2.3.4 Regeneration Process (Deloading) 57 2.3.


5 Metal Separation by Ion Exchange 58 2.3.6 Mass Balance Calculations 59 2.4 Case Study: Selective Recovery of Copper and Cobalt From a Chilean Mine Water 60 2.4.1 Problem Description and Objectives 60 2.4.2 Recovery of Copper from Mining Influenced Water 63 2.


4.3 Cobalt Enrichment Using the Runoff Water from Previous Column Experiments 65 2.4.3.1 Column Experiment with TP 220 Resin Without pH Adjustment 66 2.4.3.2 Comparison of Breakthrough Curves in Cobalt Enrichment Experiments 67 2.


4.4 Copper-Cobalt Separation During the Deloading Process 69 2.5 Case Study: Recovery of Zinc from Abandoned Mine Water Galleries in Saxony, Germany 71 2.6 Perspectives and Challenges 73 Acknowledgments 74 References 74 3 Remediation of Acid Mine Drainage Using Natural Materials: A Systematic Review 79 Matome L. Mothetha, Vhahangwele Masindi, Titus A.M. Msagati and Kebede K. Kefeni 3.


1 Introduction 80 3.2 Acid Mine Drainage 80 3.3 Formation of the Acid Mine Drainage 82 3.4 Potential Impacts of Acid Mine Drainage 83 3.4.1 The Impacts of AMD on the Environment and Ecology 84 3.5 Acid Mine Drainage Abatement/Prevention 85 3.6 Mechanisms of Pollutants Removal From AMD 85 3.


6.1 Active Treatment 86 3.6.2 Chemical Precipitation 86 3.6.3 Adsorption 86 3.6.4 Passive Treatment 87 3.


6.5 Other Treatment Methods 87 3.6.5.1 Ion Exchange 87 3.6.5.2 Membrane Filtration 88 3.


6.5.3 Acid Mine Drainage Treatment Using Native Materials 89 3.7 Conclusion 90 References 90 4 Recent Development of Active Technologies for AMD Treatment 95 Zvinowanda, Caliphs Abbreviations 96 4.1 Introduction 96 4.1.1 Difference Between Active and Nonactive AMD Treatment Methods 97 4.1.


2 Conventional Active Techniques for AMD Treatment 97 4.1.2.1 Alkali/Alkaline Neutralization Processes 97 4.1.2.2 In Situ Active AMD Treatment Processes 100 4.1.


2.3 Microbiological Active AMD Treatment Systems 101 4.2 Recent Developments of Active AMD Treatment Technologies 102 4.2.1 Resource Recovery From Active AMD Treatment Technologies 102 4.2.1.1 Continuous Counter-Current-Based Technologies 102 4.


2.1.2 Continuous Ion Filtration for Acid Mine Drainage Treatment 103 4.2.2 The Alkali-Barium-Calcium Process 104 4.2.3 Magnesium-Barium Oxide (MBO) Process 106 4.2.


4 HybridICE Freeze Desalination Technology 107 4.2.5 Evaporation-Based Technologies 108 4.2.5.1 Multieffect Membrane Distillation (MEND) for AMD Treatment 108 4.2.5.


2 Desalination of AMD Using Dewvaporation Process 109 4.2.5.3 Membrane-Based Technologies 109 4.3 Recent Disruptive Developments of AMD Treatment Technologies 110 4.3.1 Tailing Technology 110 4.3.


2 Advanced Oxidation Processes 111 4.3.2.1 Ferrate Oxidation-Neutralization Process 111 4.3.2.2 Treatment of AMD by Ozone Oxidation 113 4.3.


2.3 Ion-Exchange Technology for Active AMD Treatment 114 References 115 5 Buffering Capacity of Soils in Mining Areas and Mitigation of Acid Mine Drainage Formation 119 Rudzani Lusunzi, Elvis Fosso-Kankeu and Frans Waanders Abbreviations 120 5.1 Introduction 120 5.2 Control of Acid Mine Drainage 121 5.2.1 Water Covers 122 5.2.2 Mine Land Reclamation 122 5.


2.3 Biocidal AMD Control 124 5.2.4 Alternative Dump Construction 124 5.3 Treatment of Acid Mine Drainage 124 5.3.1 Active Treatment 125 5.3.


1.1 Limestone 125 5.3.1.2 Hydrated Lime 126 5.3.1.3 Quicklime 126 5.


3.1.4 Soda Ash 126 5.3.1.5 Caustic Soda 127 5.3.1.


6 Ammonia 127 5.3.2 Passive Treatment 128 5.3.2.1 Biological Passive Treatment Systems 129 5.3.2.


2 Geochemical Passive Treatment Systems 133 5.3.3 Emerging Passive Treatment Systems 135 5.3.3.1 Phytoremediation 135 References 138 6 Novel Approaches to Passive and Semi-Passive Treatment of ZincBearing Circumneutral Mine Waters in England and Wales 147 Kennedy, J., Okeme, I.C.


and Sapsford D.J. 6.1 Introduction 148 6.1.1 Active Treatment Options for Zn 151 6.1.2 Passive Treatment Options for Zn 153 6.


2 Hybrid Semi-Passive Treatment: Na2 Co3 Dosing and Other Water Treatment Reagents 155 6.2.1 Abbey Consols Mine Water 156 6.2.2 Laboratory Scale Na2 Co3 Dosing 158 6.2.3 Practical Implementation of Na2 Co3 Dosing 159 6.3 Polishing of Trace Metals With Vertical Flow Reactors 162 6.


4 Concluding Remarks 165 References 167 7 Recovery of Drinking Water and Valuable Metals From Iron-Rich Acid Mine Water Through a Combined Biological, Chemical, and Physical Treatment Process 177 Tumelo Monty Mogashane, Johannes Philippus Maree, Kwena Desmond Modibane, Munyaradzi Mujuru and Mamasegare Mabel Mphahlele-Makgwane 7.1 Introduction 178 7.1.1 General Problem with Mine Water 178 7.1.2 Legislation 179 7.1.3 Ideal Solution 180 7.


2 Objectives 180 7.3 Literature 181 7.3.1 Mine Water Treatment Processes 181 7.3.1.1 Limestone 181 7.3.


1.2 Gypsum Crystallization and Inhibition 182 7.3.1.3 Roc 183 7.3.1.4 Biological Iron (II) Oxidation 183 7.


3.1.5 Selective Metal Removal 184 7.3.2 Solubilities 184 7.3.3 Pigment 185 7.4 Materials and Methods 185 7.


4.1 Fe 2+ Oxidation 185 7.4.1.1 Feedstock 185 7.4.1.2 Equipment 187 7.


4.1.3 Procedure 187 7.4.1.4 Experimental 188 7.4.2 Neutralization (CaCO 3 , Na2 Co3 and MgO) 188 7.


4.2.1 Feedstock 188 7.4.2.2 Equipment 188 7.4.2.


3 Procedure 189 7.4.2.4 Experimental 189 7.4.3 pH 7.5 Sludge From Na2 Co3 as Alkali for Fe 3+ Removal 189 7.4.


3.1 Feedstock 189 7.4.3.2 Equipment 189 7.4.3.3 Procedure 189 7.


4.3.4 Experimental 190 7.4.4 Inhibition 190 7.4.4.1 Feedstock 190 7.


4.4.2 Equipment 190 7.4.4.3 Procedure 190 7.4.4.


4 Experimental 190 7.4.5 MgO/SiO 2 Separation 190 7.4.5.1 Feedstock 190 7.4.5.


2 Equipment 191 7.4.5.3 Procedure 191 7.4.5.4 Experimental 191 7.4.


6 SiO 2 Removal 192 7.4.7 Pigment Formation 192 7.4.7.1 Feedstock 192 7.4.7.


2 Equipment 192 7.4.7.3 Procedure 192 7.4.7.4 Experimental 192 7.4.


8 Analytical 192 7.4.9 Characterization of the Sludge 193 7.4.10 Oli 193 7.5 Results and Discussion 194 7.5.1 Chemical Composition 194 7.


5.2 Biological Fe 2+ -Oxidation 19.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...