Portfolio Construction and Analytics
Portfolio Construction and Analytics
Click to enlarge
Author(s): Fabozzi, Frank
Fabozzi, Frank J.
ISBN No.: 9781118656747
Pages: 624
Year: 201603
Format: E-Book
Price: $ 172.50
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

Preface xix About the Authors xxv Acknowledgments xxvii CHAPTER 1 Introduction to Portfolio Management and Analytics 1 1.1 Asset Classes and the Asset Allocation Decision 1 1.2 The Portfolio Management Process 4 1.2.1 Setting the Investment Objectives 4 1.2.2 Developing and Implementing a Portfolio Strategy 6 1.2.


3 Monitoring the Portfolio 8 1.2.4 Adjusting the Portfolio 9 1.3 Traditional versus Quantitative Asset Management 9 1.4 Overview of Portfolio Analytics 10 1.4.1 Market Analytics 12 1.4.


2 Financial Screening 15 1.4.3 Asset Allocation Models 16 1.4.4 Strategy Testing and Evaluating Portfolio Performance 17 1.4.5 Systems for Portfolio Analytics 20 1.5 Outline of Topics Covered in the Book 22 PART ONE Statistical Models of Risk and Uncertainty CHAPTER 2 Random Variables, Probability Distributions, and Important Statistical Concepts 31 2.


1 What Is a Probability Distribution? 31 2.2 The Bernoulli Probability Distribution and Probability Mass Functions 32 2.3 The Binomial Probability Distribution and Discrete Distributions 34 2.4 The Normal Distribution and Probability Density Functions 38 2.5 The Concept of Cumulative Probability 41 2.6 Describing Distributions 44 2.6.1 Measures of Central Tendency 44 2.


6.2 Measures of Risk 47 2.6.3 Skew 54 2.6.4 Kurtosis 55 2.7 Dependence between Two Random Variables: Covariance and Correlation 55 2.8 Sums of Random Variables 57 2.


9 Joint Probability Distributions and Conditional Probability 61 2.10 Copulas 64 2.11 From Probability Theory to Statistical Measurement: Probability Distributions and Sampling 66 2.11.1 Central Limit Theorem 70 2.11.2 Confidence Intervals 71 2.11.


3 Bootstrapping 72 2.11.4 Hypothesis Testing 73 CHAPTER 3 Important Probability Distributions 77 3.1 Examples of Probability Distributions 79 3.1.1 Notation Used in Describing Continuous Probability Distributions 79 3.1.2 Discrete and Continuous Uniform Distributions 80 3.


1.3 Student''s t Distribution 82 3.1.4 Lognormal Distribution 83 3.1.5 Poisson Distribution 85 3.1.6 Exponential Distribution 87 3.


1.7 Chi-Square Distribution 88 3.1.8 Gamma Distribution 90 3.1.9 Beta Distribution 90 3.2 Modeling Financial Return Distributions 91 3.2.


1 Elliptical Distributions 92 3.2.2 Stable Paretian Distributions 94 3.2.3 Generalized Lambda Distribution 96 3.3 Modeling Tails of Financial Return Distributions 98 3.3.1 Generalized Extreme Value Distribution 98 3.


3.2 Generalized Pareto Distribution 99 3.3.3 Extreme Value Models 101 CHAPTER 4 Statistical Estimation Models 106 4.1 Commonly Used Return Estimation Models 106 4.2 Regression Analysis 108 4.2.1 A Simple Regression Example 109 4.


2.2 Regression Applications in the Investment Management Process 114 4.3 Factor Analysis 116 4.4 Principal Components Analysis 118 4.5 Autoregressive Conditional Heteroscedastic Models 125 PART TWO Simulation and Optimization Modeling CHAPTER 5 Simulation Modeling 133 5.1 Monte Carlo Simulation: A Simple Example 133 5.1.1 Selecting Probability Distributions for the Inputs 135 5.


1.2 Interpreting Monte Carlo Simulation Output 137 5.2 Why Use Simulation? 140 5.2.1 Multiple Input Variables and Compounding Distributions 141 5.2.2 Incorporating Correlations 142 5.2.


3 Evaluating Decisions 144 5.3 How Many Scenarios? 147 5.4 Random Number Generation 149 CHAPTER 6 Optimization Modeling 151 6.1 Optimization Formulations 152 6.1.1 Minimization versus Maximization 154 6.1.2 Local versus Global Optima 155 6.


1.3 Multiple Objectives 156 6.2 Important Types of Optimization Problems 157 6.2.1 Convex Programming 157 6.2.2 Linear Programming 158 6.2.


3 Quadratic Programming 159 6.2.4 Second-Order Cone Programming 160 6.2.5 Integer and Mixed Integer Programming 161 6.3 A Simple Optimization Problem Formulation Example: Portfolio Allocation 161 6.4 Optimization Algorithms 166 6.5 Optimization Software 168 6.


6 A Software Implementation Example 170 6.6.1 Optimization with Excel Solver 171 6.6.2 Solution to the Portfolio Allocation Example 175 CHAPTER 7 Optimization under Uncertainty 180 7.1 Dynamic Programming 181 7.2 Stochastic Programming 183 7.2.


1 Multistage Models 184 7.2.2 Mean-Risk Stochastic Models 189 7.2.3 Chance-Constrained Models 191 7.3 Robust Optimization 194 PART THREE Portfolio Theory CHAPTER 8 Asset Diversification 203 8.1 The Case for Diversification 204 8.2 The Classical Mean-Variance Optimization Framework 208 8.


3 Efficient Frontiers 212 8.4 Alternative Formulations of the Classical Mean-Variance Optimization Problem 215 8.4.1 Expected Return Formulation 215 8.4.2 Risk Aversion Formulation 215 8.5 The Capital Market Line 216 8.6 Expected Utility Theory 220 8.


6.1 Quadratic Utility Function 221 8.6.2 Linear Utility Function 223 8.6.3 Exponential Utility Function 224 8.6.4 Power Utility Function 224 8.


6.5 Logarithmic Utility Function 224 8.7 Diversification Redefined 226 CHAPTER 9 Factor Models 232 9.1 Factor Models in the Financial Economics Literature 233 9.2 Mean-Variance Optimization with Factor Models 236 9.3 Factor Selection in Practice 239 9.4 Factor Models for Alpha Construction 243 9.5 Factor Models for Risk Estimation 245 9.


5.1 Macroeconomic Factor Models 245 9.5.2 Fundamental Factor Models 246 9.5.3 Statistical Factor Models 248 9.5.4 Hybrid Factor Models 250 9.


5.5 Selecting the "Right" Factor Model 250 9.6 Data Management and Quality Issues 251 9.6.1 Data Alignment 252 9.6.2 Survival Bias 253 9.6.


3 Look-Ahead Bias 253 9.6.4 Data Snooping 254 9.7 Risk Decomposition, Risk Attribution, and Performance Attribution 254 9.8 Factor Investing 256 CHAPTER 10 Benchmarks and the Use of Tracking Error in Portfolio Construction 260 10.1 Tracking Error versus Alpha: Calculation and Interpretation 261 10.2 Forward-Looking versus Backward-Looking Tracking Error 264 10.3 Tracking Error and Information Ratio 265 10.


4 Predicted Tracking Error Calculation 265 10.4.1 Variance-Covariance Method for Tracking Error Calculation 266 10.4.2 Tracking Error Calculation Based on a Multifactor Model 266 10.5 Benchmarks and Indexes 268 10.5.1 Market Indexes 268 10.


5.2 Noncapitalization Weighted Indexes 270 10.6 Smart Beta Investing 272 PART FOUR Equity Portfolio Management CHAPTER 11 Advances in Quantitative Equity Portfolio Management 281 11.1 Portfolio Constraints Commonly Used in Practice 282 11.1.1 Long-Only (No-Short-Selling) Constraints 283 11.1.2 Holding Constraints 283 11.


1.3 Turnover Constraints 284 11.1.4 Factor Constraints 284 11.1.5 Cardinality Constraints 286 11.1.6 Minimum Holding and Transaction Size Constraints 287 11.


1.7 Round Lot Constraints 288 11.1.8 Tracking Error Constraints 290 11.1.9 Soft Constraints 291 11.1.10 Misalignment Caused by Constraints 291 11.


2 Portfolio Optimization with Tail Risk Measures 291 11.2.1 Portfolio Value-at-Risk Optimization 292 11.2.2 Portfolio Conditional Value-at-Risk Optimization 294 11.3 Incorporating Transaction Costs 297 11.3.1 Linear Transaction Costs 299 11.


3.2 Piecewise-Linear Transaction Costs 300 11.3.3 Quadratic Transaction Costs 302 11.3.4 Fixed Transaction Costs 302 11.3.5 Market Impact Costs 303 11.


4 Multiaccount Optimization 304 11.5 Incorporating Taxes 308 11.6 Robust Parameter Estimation 312 11.7 Portfolio Resampling 314 11.8 Robust Portfolio Optimization 317 CHAPTER 12 Factor-Based Equity Portfolio Construction and Performance Evaluation 325 12.1 Equity Factors Used in Practice 325 12.1.1 Fundamental Factors 326 12.


1.2 Macroeconomic Factors 327 12.1.3 Technical Factors 327 12.1.4 Additional Factors 327 12.2 Stock Screens 328 12.3 Portfolio Selection 331 12.


3.1 Ad-Hoc Portfolio Selection 331 12.3.2 Stratification 332 12.3.3 Factor Exposure Targeting 333 12.4 Risk Decomposition 334 12.5 Stress Testing 343 12.


6 Portfolio Performance Evaluation 346 12.7 Risk Forecasts and Simulation 350 PART FIVE Fixed Income Portfolio Management CHAPTER 13 Fundamentals of Fixed Income Portfolio Management 361 13.1 Fixed Income Instruments and Major Sectors of the Bond Market 361 13.1.1 Treasury Securities 362 13.1.2 Federal Agency Securities 363 13.1.


3 Corporate Bonds 363 13.1.4 Municipal Bonds 364 13.1.5 Structured Products 364 13.2 Features of Fixed Income Securities 365 13.2.1 Term to Maturity and Maturity 365 13.


2.2 Par Value 366 13.2.3 Coupon Rate 366 13.2.4 Bond Valuation and Yield 367 13.2.5 Provisions for Paying Off Bonds 368 13.


2.6 Bondholder Option Provisions 370 13.3 Major Risks Associated with Investing in Bonds 371 13.3.1 Interest Rate Risk 371 13.3.2 Call and Prepayment Risk.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...