A Mathematical Journey to Quantum Mechanics
A Mathematical Journey to Quantum Mechanics
Click to enlarge
Author(s): Capozziello, Salvatore
ISBN No.: 9783030860974
Pages: xv, 289
Year: 202109
Format: Trade Cloth (Hard Cover)
Price: $ 122.98
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

1 Newtonian Mechanics, Lagrangians and Hamiltonians 15 1.1 Some Words about the Priciples of Newtonian Mechanics . 15 1.2 The Mechanical Lagrangian . 17 1.3 Lagrangians and Euler-Lagrange Equations . 21 1.4 The Mechanical Hamiltonian .


24 1.5 Hamiltonians and General Hamilton''s Equations . 27 1.6 Poisson''s Brackets in Hamiltonian Mechanics . 29 2 Can Light Be Described by Classical Mechanics? 33 2.1 Michelson-Morley Experiment and the Principles of Special Relativity . 33 2.2 Moving among Inertial Frames: Lorentz Transformations .


38 2.3 Addition of Velocities: the Relativistic Formula . 41 2.4 Einstein''s Rest Energy Formula: E=mc2 . 42 2.5 Relativistic Energy Formula: E2 = p2 c2 + m2 c4 . 44 2.6 Describing Electromagnetic Waves: Maxwell''s Equations .


44 2.7 Invariance under Lorentz Transformations and non-Invariance under Galilei''s Transformations . 48 3 Why Quantum Mechanics? 51 3.1 What Do We Think about the Nature of Matter . 51 3.2 Monochromatic Plane Waves - the One Dimensional Case . 55 3.3 Young''s Double Split Experiment: Light Seen as a Wave .


60 3.4 The Plank-Einstein formula: E=hf . 64 3.5 Light Seen as a Corpuscle: Einstein''s Photoelectric Eect . 69 3.6 Atomic Spectra and Bohr''s Model of Hydrogen Atom . 70 3.7 Louis de Broglie Hypothesis: Material Objects Exhibit Wave-like Behavior .


73 3.8 Strengthening Einstein''s Idea: The Compton Eect . 75 4 Schrödinger''s Equations and Consequences 79 4.1 The Schrödinger''s Equations - the one Dimensional Case . 79 4.2 Solving Schrödinger Equation for the Free Particle . 81 4.3 Solving Schrödinger Equation for a Particle in a Box .


82 4.4 Solving Schrödinger Equation in the Case of Harmonic Oscillator. The Quantified Energies . 85 5 The Mathematics behind the Harmonic Oscillator 91 5.1 Hermite Polynomials . 91 5.2 Real and Complex Vector Structures . 97 5.


2.1 Finite Dimensional Real and Complex Vector Spaces, Inner Product, Norm, Distance, Completeness . 97 5.2.2 Pre-Hilbert and Hilbert Spaces . 100 5.2.3 Examples of Hilbert Spaces .


103 5.2.4 Orthogonal and Orthonormal Systems in Hilbert Spaces . 109 5.2.5 Linear Operators, Eigenvalues, Eigenvectors and Schrödinger Equation . 110 5.3 Again about de Broglie Hypothesis: Wave-Particle Duality and Wave Packets .


115 5.4 More about Electron in an Atom . 118 6 Understanding Heisenberg''s Uncertainty Principle and the Mathematics behind 121 6.1 Wave Packets and Schrödinger Equation . 121 6.2 Wave Functions with Determined Momentum and Energy. Schrödinger''s Equation for related Functions . 123 6.


3 Gauss'' Wave Packet and Heisenberg Uncertainty Principle . 125 6.4 The Mathematics behind the Wave Packets: Fourier Series and Fourier Transforms . 130 7 Evolving to Quantum Mechanics Principles 143 7.1 Operators in Quantum Mechanics . 143 7.2 The Conservation Law . 149 7.


3 Similarities with Hamiltonian Formalism of Classical Mechanics . 153 7.4 (t; x) from a Wave Function to a Quantum State of a System. The Postulates of Quantum Mechanics . 155 8 Consequences of Quantum Mechanics Postulates 167 8.1 Ehrenfest''s Theorem and Consequences . 167 8.2 A Consequence of QM Postulates: Heisenberg''s General Uncertainty Principle .


170 8.3 Dirac Notation and what a QM Experiment Is . 175 8.4 Polarization of Photons in Dirac Notation . 178 8.5 Electron Spin . 186 8.6 Revisiting the Harmonic Oscillator: the Ladder Operators .


197 8.7 Angular Momentum Operators in Quantum Mechanics . 205 8.8 Gradient and Laplace Operator in Spherical Coordinates. Revisiting the Schrödinger Equation, now in Spherical Coordinates. Legendre''s Polynomials and the Spherical Harmonics. The Hydrogen Atom and Quantum Numbers . 211 8.


9 Pauli Matrices and Dirac Equation. Relativistic Quantum Mechanics . 228.


To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...