Formal Methods Applied to Industrial Complex Systems
Formal Methods Applied to Industrial Complex Systems
Click to enlarge
Author(s): Boulanger, Jean-Louis
ISBN No.: 9781848216327
Pages: 480
Year: 201409
Format: Trade Cloth (Hard Cover)
Price: $ 296.63
Dispatch delay: Dispatched between 7 to 15 days
Status: Available

INTRODUCTION xiii CHAPTER 1. FORMAL DESCRIPTION AND MODELING OF RISKS 1 Jean-Louis BOULANGER 1.1. Introduction1 1.2. Standard process 2 1.2.1.


Risks, undesirable events and accidents 2 1.2.2. Usual process 7 1.2.3. Formal software processes for safety-critical systems 8 1.2.


4. Formal methods for safety-critical systems 9 1.2.5. Safety kernel 9 1.3. Methodology 10 1.3.


1. Presentation 10 1.3.2. Risk mastery process 10 1.4. Case study 13 1.4.


1. Rail transport system. 13 1.4.2. Presentation 13 1.4.3.


Description of the environment 14 1.4.4. Definition of side-on collision 16 1.4.5. Risk analysis17 1.5.


Implementation 18 1.5.1. The B method 18 1.5.2. Implementation 19 1.5.


3. Specification of the rail transport system and side-on collision 19 1.6. Conclusion 22 1.7. Glossary 23 1.8. Bibliography 23 CHAPTER 2.


AN INNOVATIVE APPROACH AND AN ADVENTURE IN RAIL SAFETY 27 Sylvain FIORONI 2.1. Introduction 27 2.2. Open Control of Train Interchangeable and Integrated System 30 2.3. Computerized interlocking systems 32 2.4.


Conclusion 34 2.5. Glossary 35 2.6. Bibliography 36 CHAPTER 3. USE OF FORMAL PROOF FOR CBTC (OCTYS) 37 Christophe TREMBLIN, Pierre LESOILLE and Omar REZZOUG 3.1. Introduction .


37 3.2. Presentation of the Open Control of Train Interchangeable and Integrated System CBTC 38 3.2.1. Open Control of Train Interchangeable and Integrated System 38 3.2.2.


Purpose of CBTC 39 3.2.3. CBTC architectures 40 3.3. Zone control equipment 42 3.3.1.


Presentation 42 3.3.2. SCADE model 43 3.4. Implementation of the solution 46 3.5. Technical solution and implementation 49 3.


5.1. Property definition 49 3.5.2. Two basic principles of property definition 50 3.5.3.


Test topologies 52 3.5.4. Initial analyses 53 3.5.5. The property treatment process 57 3.5.


6. Non-regression 63 3.6. Results 65 3.7. Possible improvements 66 3.8. Conclusion 67 3.


9. Glossary 68 3.10. Bibliography 69 CHAPTER 4. SAFETY DEMONSTRATION FOR A RAIL SIGNALING APPLICATION IN NOMINAL AND DEGRADED MODES USING FORMAL PROOF 71 Jean-Marc MOTA, Evguenia DMITRIEVA, Amel MAMMAR, Paul CASPI, Salimeh BEHNIA, Nicolas BRETON and Pascal RAYMOND 4.1. Introduction 71 4.1.


1. Context 73 4.2. Case description 74 4.2.1. Operational architecture of the PMI system 75 4.2.


2. CIM subsystem 76 4.2.3. CIM program verification with and without proof 78 4.2.4. Scope of verification 80 4.


3. Modeling the whole system 82 4.3.1. Application model 82 4.3.2. Safety properties 83 4.


3.3. Environment model 86 4.4. Formal proof suite 97 4.4.1. Modeling the system 97 4.


4.2. Non-certified analysis chain 98 4.4.3. The certified analysis chain 99 4.4.4.


Assessment of the proof suite 100 4.5. Application 101 4.6. Results of our experience 105 4.6.1. Environment modeling 105 4.


6.2. Proof vs. testing 107 4.6.3. Limitations 108 4.7.


Conclusion and prospects 108 4.8. Glossary 110 4.9. Bibliography 111 CHAPTER 5. FORMAL VERIFICATION OF DATA FOR PARAMETERIZED SYSTEMS 115 Mathieu CLABAUT 5.1. Introduction 115 5.


1.1. Systerel 115 5.1.2. Data verification 116 5.1.3.


Parameterized systems 117 5.2. Data in the development cycle 118 5.2.1. Data and property identification 119 5.2.2.


Modeling 119 5.2.3. Property validation 120 5.2.4. Data production 120 5.2.


5. Property verification using data 120 5.2.6. Data integration 120 5.3. Data verification 122 5.3.


1. Manual verification 122 5.3.2. Algorithmic verification 122 5.3.3. Formal verification 123 5.


4. Example of implementation 130 5.4.1. Presentation 130 5.4.2. Property modeling 131 5.


4.3. Data extraction 132 5.4.4. Tools 133 5.5. SSIL4 process 133 5.


6. Conclusion 134 5.7. Glossary 134 5.8. Bibliography 134 CHAPTER 6. ERTMS MODELING USING EFS 137 Laurent FERIER, Svitlana LUKICHEVA and Stanislas PINTE 6.1.


The context 137 6.2. EFS description 139 6.2.1. Characteristics 139 6.2.2.


Modeling process 147 6.2.3. Interpretation or code generation 148 6.3. Braking curves modeling 149 6.3.1.


Computing braking curves 149 6.3.2. Permitted speed and speed limitation curves 151 6.3.3. Deceleration factors 155 6.3.


4. Deceleration curves 156 6.3.5. Target supervision limits 159 6.3.6. Symbolic computation 159 6.


3.7. Braking curves verification 160 6.4. Conclusion 161 6.5. Further works 162 6.6.


Bibliography 163 CHAPTER 7. THE USE OF A "MODEL-BASED DESIGN" APPROACH ON AN ERTMS LEVEL 2 GROUND SYSTEM 165 Stéphane CALLET, Saïd EL FASSI, Hervé FEDELER, Damien LEDOUX and Thierry NAVARRO 7.1. Introduction 166 7.2. Modeling an ERTMS Level 2 RBC 168 7.2.1.


Overall architecture of the model 170 7.2.2. Functional separation 171 7.3. Generation of the configuration 175 7.3.1.


Development of a track plan 175 7.3.2. Writing the configuration 176 7.3.3. Translation of the configurations to the MATLAB/Simulink format 177 7.4.


Validating the model 177 7.4.1. Development of a language in which to write the scenarios 178 7.4.2. Writing the scenarios 178 7.4.


3. Verification of the scenarios 179 7.4.4. Animation of the model 180 7.4.5. Addition of coherence properties for the scenarios 183 7.


4.6. Coverage of the model 183 7.5. Proof of the model 184 7.5.1. Expressing the properties 184 7.


5.2. Proof of the properties 186 7.6. Report generation 186 7.6.1. Documentation of the model 187 7.


6.2. Automatic generation of the report 188 7.7. Principal modeling choices 189 7.8. Conclusion 190 CHAPTER 8. APPLYING ABSTRACT INTERPRETATION TO DEMONSTRATE FUNCTIONAL SAFETY 191 Daniel KÄSTNER 8.


1. Introduction 191 8.2. Abstract interpretation 193 8.3. Non-functional correctness 194 8.3.1.


Stack usage 194 8.3.2. Worst-case execution time 195 8.3.3. Run-time errors 196 8.4.


Why testing is not enough 197 8.5. Verifying non-functional program properties by abstract Interpretation 199 8.5.1. WCET and stack usage analysis 200 8.5.2.


Run-time error analysis 206 8.6. The safety standards perspective 210 8.6.1. DO-178B 210 8.6.2.


DO-178C / DO-333 211 8.6.3. ISO-26262 214 8.6.4. IEC-61508 216 8.6.


5. CENELEC EN-50128 217 8.6.6. Regulations for medical software 218 8.7. Providing confidence - tool qualification and more 219 8.7.


1. Tool qualification 220 8.8. Integration in the development process 222 8.9. Practical experience 223 8.10. Summary 224 8.


11. Appendix A: Non-functional verification objectives of DO-178C 225 8.12. Appendix B: Non-functional requirements of ISO-26262 225 8.13. Bibliography 229 CHAPTER 9. BCARE: AUTOMATIC RULE CHECKING FOR USE WITH SIEMENS 235 Karim BERKANI, Melanie JACQUEL and Eric LE LAY 9.1.


Overview 235 9.2. Introduction 235 9.3. Description of the validation process for added rules 238 9.3.1. The proof activity 238 9.


3.2. Rules 238 9.3.3. Rule validation 241 9.4. The BCARe validation tool 243 9.


4.1. BCARe: an environment for rule validation 243 9.4.2. Check_blvar 244 9.4.3.


Chaine_verif 253 9.5. Proof of the BCARe validation lemmas 260 9.5.1. Automatic proof using Ltac 261 9.5.2.


Evaluation and tests 269 9.6. Conclusion 271 9.7. Acknowledgments 272 9.8. Bibliography 272 CHAPTER 10. VALIDATION OF RAILWAY SECURITY AUTOMATISMS BASED ON PETRI NETWORKS 275 Marc ANTONI 10.


1. Introduction 275 10.1.1. Note to the reader 275 10.1.2. Summary 275 10.


2. Issues involved 277 10.2.1. Introduction 277 10.2.2. An industry context: railways 278 10.


2.3. Determinism versus probabilism for the safe management of critical computerized systems 279 10.2.4. A key element: formal validation 300 10.3. Railway safety: basic concepts 301 10.


3.1. Control of safety properties and postulates 302 10.3.2. Aspects that should be considered for carrying out a formal validation 308 10.4. Formal validation method for critical computerized systems 313 10.


4.1. The interlocking module for modern signal boxes 313 10.4.2. AEFD specification language 316 10.4.3.


Method for proof by assertions 325 10.5. Application to a real signal box 337 10.5.1. Introduction 337 10.5.2.


Presentation of the track plan and the signal box program 337 10.5.3. Safety properties and postulates 338 10.5.4. Exploration and formal validation of the application functional software of the signal box 339 10.6.


Conclusion 340 10.6.1. From a general point of view 340 10.6.2. The use of the method 342 10.6.


3. From a research point of view 344 10.6.4. From the railway industry perspective 344 10.6.5. The model and its implementation 346 10.


7. Glossary 347 10.8. Bibliography 348

To be able to view the table of contents for this publication then please subscribe by clicking the button below...
To be able to view the full description for this publication then please subscribe by clicking the button below...